Câu hỏi:
10/10/2024 2,4231) Bác Tiến chia số tiền 400 triệu đồng của mình cho hai khoản đầu tư. Sau một năm, tổng số tiền lãi thu được là 27 triệu đồng. Lãi suất cho khoản đầu tư thứ nhất là \(6\% /\)năm và khoản đầu tư thứ hai là \(8\% /\)năm. Tính số tiền bác Tiến đầu tư cho mỗi khoản.
2) Một tổ sản xuất có kế hoạch làm 300 sản phẩm cùng loại trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 10 sản phẩm so với số sản phẩm dự định làm trong một ngày theo kế hoạch. Vì thế tổ đã hoàn thành công việc sớm hơn kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu sản phẩm? (Giả định rằng số sản phẩm mà tổ đó làm được trong mỗi ngày là bằng nhau).
3) Biết rằng phương trình bậc hai \({x^2} - 3x + a = 0\) có một nghiệm là \[x = \frac{{3 - \sqrt 5 }}{2}.\] Tìm tổng bình phương hai nghiệm của phương trình trên.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
1) Cách 1: Giải bài toán bằng cách lập phương trình
Gọi số tiền ở khoản đầu tư thứ nhất của Bác Tiến là \(x\) (triệu đồng) \(\left( {0 \le x \le 400} \right).\)
Số tiền ở khoản đầu tư thứ hai là: \(400 - x\) (triệu đồng).
Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).
Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% \left( {400 - x} \right) = 32 - 0,08x\) (triệu đồng).
Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:
\(0,06x + 32 - 0,08x = 27\).
Giải phương trình:
\(0,06x + 32 - 0,08x = 27\)
\( - 0,02x = 27 - 32\)
\( - 0,02x = - 5\)
\(x = 250\) (thoả mãn điều kiện).
Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là \(400 - 250 = 150\) (triệu đồng).
Cách 2: Giải bài toán bằng cách lập hệ phương trình
Gọi số tiền ở khoản đầu tư thứ nhất và thứ hai của Bác Tiến lần lượt là \(x\) và \(y\) (triệu đồng) \(\left( {0 \le x \le 400,\,\,0 \le y \le 400} \right).\)
Theo bài, tổng số tiền đầu tư của bác Tiến là 400 triệu đồng nên ta có phương trình:
\(x + y = 400\) (1)
Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).
Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% y = 0,08y\) (triệu đồng).
Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:
\(0,06x + 0,08y = 27\) (2)
Từ phương trình (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 400\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\0,06x + 0,08y = 27\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (1) ta có: \(y = 400 - x\) (3)
Thế vào phương trình (2) ta được: \(0,06x + 0,08\left( {400 - x} \right) = 27.\) (4)
Giải phương trình (4):
\(0,06x + 0,08\left( {400 - x} \right) = 27\)
\(0,06x + 32 - 0,08x = 27\)
\( - 0,02x = 27 - 32\)
\( - 0,02x = - 5\)
\(x = 250\) (thoả mãn điều kiện).
Thay giá trị \(x = 250\) vào phương trình (3) ta được: \(y = 400 - 250 = 150\)(thoả mãn điều kiện).
Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là 150 triệu đồng.
2) Giả sử theo kế hoạch mỗi ngày tổ sản xuất phải làm \(x\) (sản phẩm) \(\left( {x \in \mathbb{N}*,{\mkern 1mu} {\mkern 1mu} x < 300} \right).\)
Khi đó, theo kế hoạch thời gian cần thiết để làm xong 300 sản phẩm là: \(\frac{{300}}{x}\) (ngày).
Thực tế mỗi ngày số sản phẩm mà tổ làm được là: \(x + 10\) (sản phẩm).
Khi đó, thời gian thực tế mà tổ sản xuất làm xong 300 sản phẩm là: \(\frac{{300}}{{x + 10}}\) (ngày).
Do tổ đã hoàn thành công việc sớm hơn 1 ngày nên ta có phương trình:
\(\frac{{300}}{x} - \frac{{300}}{{x + 10}} = 1\) (1)
Giải phương trình (1):
\(\frac{{300}}{x} - \frac{{300}}{{x + 10}} = 1\)
\(\frac{1}{x} - \frac{1}{{x + 10}} = \frac{1}{{300}}\)
\(\frac{{x + 10 - x}}{{x\left( {x + 10} \right)}} = \frac{1}{{300}}\)
\(\frac{{10}}{{{x^2} + 10x}} = \frac{1}{{300}}\)
\({x^2} + 10x = 3\,\,000\)
\({x^2} - 50x + 60x - 3\,\,000 = 0\)
\(x\left( {x - 50} \right) + 60\left( {x - 50} \right) = 0\)
\(\left( {x - 50} \right)\left( {x + 60} \right) = 0\)
\(x - 50 = 0\) hoặc \(x + 60 = 0\)
\(x = 50\) (thoả mãn) \(x = - 60\) (không thoả mãn).
Vậy theo kế hoạch mỗi ngày tổ sản xuất cần sản xuất 50 sản phẩm.
3) Để phương trình \({x^2} - 3x + a = 0\) nhận \(x = \frac{{3 - \sqrt 5 }}{2}\) làm một nghiệm thì \(x = \frac{{3 - \sqrt 5 }}{2}\) phải thỏa mãn phương trình đó.
Thay \(x = \frac{{3 - \sqrt 5 }}{2}\) vào phương trình \({x^2} - 3x + a = 0\), ta được:
\({\left( {\frac{{3 - \sqrt 5 }}{2}} \right)^2} - 3 \cdot \left( {\frac{{3 - \sqrt 5 }}{2}} \right) + a = 0\)
\(\frac{{9 - 6\sqrt 5 + 5}}{4} - \frac{{9 - 3\sqrt 5 }}{2} + a = 0\)
\(\frac{{9 - 6\sqrt 5 + 5 - 18 + 6\sqrt 5 }}{4} + a = 0\)
\(\frac{{ - 4}}{4} + a = 0\)
\( - 1 + a = 0\)
\(a = 1\).
Với \(a = 1\), phương trình bậc hai trở thành: \({x^2} - 3x + 1 = 0\) (1)
Do phương trình (1) có hai nghiệm nên theo hệ thức Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 3\\{x_1}{x_2} = 1.\end{array} \right.\)
Ta có \(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {3^2} - 2 \cdot 1 = 7.\)
Vậy \(a = 1\) và tổng bình phương hai nghiệm của phương trình đã cho khi ấy bằng 7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình bậc hai (m là tham số).
a) Chứng minh phương trình luôn có hai nghiệm với mọi m
b) Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện
Câu 2:
Cho hai biểu thức:
và với
1) Tính giá trị của biểu thức A khi
2) Chứng minh
3) Xét biểu thức P = A.B. Tìm giá trị nhỏ nhất của biểu thức
Câu 3:
Câu 4:
Đầu năm 2022, hai công ty chế biến nông sản dự định xuất khẩu tổng cộng 3 000 tấn nông sản. Do thực tế dịch bệnh Covid-19 diễn biến phức tạp nên sản lượng xuất khẩu nông sản của công ty thứ nhất giảm 15% công ty thứ hai giảm 10%. Vì vậy, cả hai công ty chỉ xuất khẩu được 2 640 tấn nông sản. Hỏi ban đầu, mỗi công ty dự định xuất khẩu bao nhiêu tấn nông sản?
Câu 5:
Câu 6:
Cho nửa đường tròn (O;R), đường kính AB. Gọi Ax là tia tiếp tuyến tại A của nửa đường tròn. Trên tia Ax lấy điểm M bất kì sao cho AM > R, MB cắt nửa đường tròn tại điểm thứ hai là K. Qua A kẻ đường thẳng vuông góc với MO tại I, AI cắt nửa đường tròn tại C (C khác A). Qua C kẻ CH vuông góc với CH cắt MB tại N
1) Chứng minh bốn điểm A, I, K, M cùng nằm trên một đường tròn.
2) Chúng minh và IN // AB
3) Đường thẳng qua H và song song với AC cắt BI tại P. Chứng minh
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!