Câu hỏi:
12/10/2024 213I. Nhận biết
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau:
Quảng cáo
Trả lời:
Đáp án đúng là: C
⦁ Vì \[a > b\] nên \[a - 5 > b - 5.\] Do đó (I) đúng.
⦁ Ta có \[a - 5 > b - 5\], mà \[b > b - 5\] nên ta chưa đủ dữ kiện để kết luận \[a - 5 > b.\]
Do đó (II) sai.
⦁ Vì \[a > b\] nên \[a + 2 > b + 2.\]
Mà \[a + 3 > a + 2\] (do \[a + 3 = a + 2 + 1 > a + 2).\]
Suy ra \[a + 3 > b + 2.\]
Do đó (III) đúng.
Vì vậy có hai khẳng định đúng là (I) và (III).
Vậy ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có:
\[ - 3x + 7 > 0\]
\[ - 3x > - 7\]
\[x < \frac{7}{3}.\]
Vậy nghiệm của phương trình đã cho là \[x < \frac{7}{3}.\]
Do đó ta chọn phương án A.
</></>
Lời giải
Đáp án đúng là: A
Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu (\[a\] âm và \[b\] dương; \[a\] dương và \[b\] âm) và ngược lại.
Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.