Câu hỏi:
12/10/2024 76I. Nhận biết
Cho \[a > b\] và các khẳng định sau:
(I) \[a - 5 > b - 5.\]
(II) \[a - 5 > b.\]
(III) \[a + 3 > b + 2.\]
Có bao nhiêu khẳng định đúng trong các khẳng định sau:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
⦁ Vì \[a > b\] nên \[a - 5 > b - 5.\] Do đó (I) đúng.
⦁ Ta có \[a - 5 > b - 5\], mà \[b > b - 5\] nên ta chưa đủ dữ kiện để kết luận \[a - 5 > b.\]
Do đó (II) sai.
⦁ Vì \[a > b\] nên \[a + 2 > b + 2.\]
Mà \[a + 3 > a + 2\] (do \[a + 3 = a + 2 + 1 > a + 2).\]
Suy ra \[a + 3 > b + 2.\]
Do đó (III) đúng.
Vì vậy có hai khẳng định đúng là (I) và (III).
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào ngược chiều?
Câu 4:
II. Thông hiểu
Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói
Câu 5:
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Câu 6:
III. Vận dụng
Cho \[a,b\] là các số thực dương. Khẳng định nào sau đây là đúng?
Câu 7:
Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
về câu hỏi!