Câu hỏi:

12/10/2024 213

I. Nhận biết

Cho \[a > b\] và các khẳng định sau:

(I) \[a - 5 > b - 5.\]

(II) \[a - 5 > b.\]

(III) \[a + 3 > b + 2.\]

Có bao nhiêu khẳng định đúng trong các khẳng định sau:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

⦁ Vì \[a > b\] nên \[a - 5 > b - 5.\] Do đó (I) đúng.

⦁ Ta có \[a - 5 > b - 5\], mà \[b > b - 5\] nên ta chưa đủ dữ kiện để kết luận \[a - 5 > b.\]

Do đó (II) sai.

⦁ Vì \[a > b\] nên \[a + 2 > b + 2.\]

Mà \[a + 3 > a + 2\] (do \[a + 3 = a + 2 + 1 > a + 2).\]

Suy ra \[a + 3 > b + 2.\]

Do đó (III) đúng.

Vì vậy có hai khẳng định đúng là (I) và (III).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có:

\[ - 3x + 7 > 0\]

\[ - 3x > - 7\]

\[x < \frac{7}{3}.\]

Vậy nghiệm của phương trình đã cho là \[x < \frac{7}{3}.\]

Do đó ta chọn phương án A.

</></>

Câu 2

Lời giải

Đáp án đúng là: A

Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu (\[a\] âm và \[b\] dương; \[a\] dương và \[b\] âm) và ngược lại.

Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.

Vậy ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP