Câu hỏi:
12/10/2024 67Một hãng taxi có giá mở cửa là 15 000 đồng và giá 12 000 đồng cho mỗi ki-lô-mét tiếp theo. Hỏi với 350 000 đồng thì hành khách có thể di chuyển được tối đa là bao nhiêu ki-lô-mét (làm tròn kết quả đến hàng đơn vị)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi \[x\] là số km mà hành khách có thể di chuyển \[\left( {x \ge 1} \right)\].
Số tiền hành khách cần trả cho 1 km đầu tiên là 15 000 đồng và số tiền hành khách trả cho \(x - 1\) (km) tiếp theo là \(12\,\,000\left( {x - 1} \right)\) (đồng).
Số tiền hành khách cần trả khi đi \(x\) (km) là \[15\,\,000 + 12\,\,000\left( {x - 1} \right)\] (đồng).
Vì hành khách chỉ có thể di chuyển với số tiền 350 000 đồng nên ta có bất phương trình
\[15\,\,000 + 12\,\,000\left( {x - 1} \right) \le 350\,\,000\]
\[15\,\,000 + 12\,\,000x - 12\,\,000 \le 350\,\,000\]
\[12\,\,000x \le 347\,\,000\]
\[x \le \frac{{347\,\,000}}{{12\,\,000}} = \frac{{347}}{{12}} \approx 28,92.\]
So với điều kiện \[x > 0,\] và số ki-lô-mét là số nguyên nên \(x = 28.\)
Vậy với 350 000 đồng thì hành khách có thể di chuyển được tối đa 28 ki-lô-mét.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào ngược chiều?
Câu 4:
II. Thông hiểu
Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói
Câu 5:
Giả sử \[a\] là số tiết học của học sinh trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Trong một ngày, học sinh có thể học tối đa 8 tiết học” ta được
Câu 6:
III. Vận dụng
Cho \[a,b\] là các số thực dương. Khẳng định nào sau đây là đúng?
Câu 7:
Nghiệm của bất phương trình \[\frac{{3x + 52}}{{10}} > \frac{{3\left( {3x + 1} \right)}}{{20}} + 1\] là
về câu hỏi!