II. Thông hiểu
Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định: \[D = \mathbb{R}\].
Ta có \[y' = 3{x^2} + 6x - 9\]; \[y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\].
Bảng biến thiên:
![Cho hàm số \[y = {x^3} + 3{x^2} - 9x + 15\]. Khẳng định nào sau đây là khẳng định sai?D. Hàm số đồng biến trên \[\left( {5; + \infty } \right)\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid0-1728822942.png)
Kết luận: Hàm số đồng biến trên các khoảng: \[\left( { - \infty ; - 3} \right),\,\,\left( {1; + \infty } \right)\].
Hàm số nghịch biến trên khoảng \[\left( { - 3;1} \right)\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Dựa vào đồ thị hàm số ta có bảng xét dấu sau

Hàm số đạt cực trị tại x = 1; x = 2; x = 3.
Vậy đồ thị hàm số có ba điểm cực trị.
Lời giải
Đáp án đúng là: D
- Xét đáp án A, trên khoảng \(\left( { - 2\,;2} \right)\) đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng đi xuống là hàm số nghịch biến nên loại.
- Xét đáp án B, trên khoảng \(\left( {0\,;\,2} \right)\) đồ thị có đoạn hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.
- Xét đáp án C, trên khoảng \(\left( { - 1\,;\,1} \right)\) đồ thị có hướng đi xuống là hàm số nghịch biến nên loại.
- Xét đáp án D, trên khoảng \(\left( {1\,;\,2} \right)\) đồ thị có hướng đi lên là hàm số đồng biến nên chọn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.