Câu hỏi:

13/10/2024 48

Tính góc \[\alpha \] giữa hai đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\] và \[d':\left\{ \begin{array}{l}x = 1 - t'\\y = 2\\z = - 2 + t'.\end{array} \right.\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[{\overrightarrow u _d} = \left( {1;1;0} \right),{\overrightarrow u _{d'}} = \left( { - 1;0;1} \right)\].

Có \[\cos \left( {d,d'} \right) = \left| {\cos \left( {{{\overrightarrow u }_d},{{\overrightarrow u }_{d'}}} \right)} \right| = \frac{{\left| { - 1} \right|}}{2} = \frac{1}{2}.\]

Suy ra \[\alpha = 60^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

III. Vận dụng

Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):3x + 4y + 5z + 2 = 0\] và đường thẳng \[d\] là giao tuyến của hai mặt phẳng \[\left( \alpha \right):x - 2y + 1 = 0\] và \[\left( \beta \right):x - 2y - 3z = 0\]. Hãy tính số đo góc \[\alpha \] giữa \[d\] và \[\left( P \right)\].

Xem đáp án » 13/10/2024 382

Câu 2:

Tìm tất cả các mặt phẳng \[\left( \alpha \right)\] chứa đường thẳng \[d:\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{{ - 3}}\] và tạo với mặt phẳng \[\left( P \right):2x - z + 1 = 0\] góc \[45^\circ .\]

Xem đáp án » 13/10/2024 356

Câu 3:

Trong không gian \[Oxyz\], cho hình chóp \[S.ABC\] có ba điểm \[S\left( {0;0;3} \right)\], \[A\left( {0;0;0} \right)\], \[B\left( {1;0;0} \right)\], \[C\left( {0;2;0} \right)\] và mặt phẳng \[\left( P \right):x + y + z - 3 = 0\]. Xét các mệnh đề sau:

a) Cosin góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[0.\]

b) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[\frac{2}{7}.\]

c) Cosin góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và mặt phẳng \[\left( P \right)\] bằng \[\frac{{10\sqrt 3 }}{{21}}.\]

d) Góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và mặt phẳng \[\left( {ABC} \right)\] bằng \[90^\circ .\]

Số mệnh đề đúng là

Xem đáp án » 13/10/2024 246

Câu 4:

Trong hệ tọa độ \[Oxyz\], cho ba điểm \[M\left( {1;0;0} \right)\], \[N\left( {0;1;0} \right)\] và \[P\left( {0;0;1} \right)\]. Cosin của góc giữa hai mặt phẳng \[\left( {MNP} \right)\] và \[\left( {Oxy} \right)\] bằng

Xem đáp án » 13/10/2024 198

Câu 5:

II. Thông hiểu

Cho hai đường thẳng \[{\Delta _1}:\frac{{x - 1}}{3} = \frac{y}{2} = \frac{{z + 1}}{1},{\rm{ }}{\Delta _2}:\frac{x}{{ - 1}} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 1}}\]. Góc giữa \[{\Delta _1}\] và \[{\Delta _2}\] là

Xem đáp án » 13/10/2024 83

Câu 6:

Trong không gian \[Oxyz\], hai đường thẳng \[{d_1}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{\sqrt 2 }} = \frac{{z - 3}}{1}\] và \[{d_2}:\frac{{x + 5}}{1} = \frac{{y + 3}}{{\sqrt 2 }} = \frac{{z - 5}}{m}\] tạo với nhau góc \[60^\circ \], giá trị của tham số \[m\] bằng

Xem đáp án » 13/10/2024 71

Câu 7:

Trong hệ tọa độ \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y - z - 3 = 0\] và \[\left( Q \right):x - z - 2 = 0\]. Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] bằng

Xem đáp án » 13/10/2024 68

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store