Câu hỏi:

13/10/2024 117

Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]

\[{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 9.\]

Vậy tâm của mặt cầu là \[I\left( {1; - 1;1} \right)\] và bán kính \[R = 3.\]

Để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] thì \[d\left( {I,\left( P \right)} \right) = 3\].

Suy ra \[d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 + 2.\left( { - 1} \right) + 1 - {m^2} + 4m - 5} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{{\left| { - {m^2} + 4m - 4} \right|}}{3} = 3\].

Hay \[\left| { - {m^2} + 4m - 4} \right| = 9\] \[ \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 4 = 9\\ - {m^2} + 4m - 4 = - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - {m^2} + 4m - 13 = 0\\ - {m^2} + 4m + 5 = 0\end{array} \right.\]

Giải phương trình, ta có nghiệm \[m = - 1\] hoặc \[m = 5.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Phương trình mặt cầu có dạng

\[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] với \[d = {a^2} + {b^2} + {c^2} - {R^2}.\]

Xét các đáp án, chỉ có đáp án A thỏa mãn, đồng thời ta có thể viết lại như sau:

\[{x^2} + {y^2} + {z^2} - 2x = 0\] hay \[{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1\].

Câu 2

Lời giải

Đáp án đúng là: A

Tâm \[I\] của mặt cầu là trung điểm của \[AB\] do đó \[I\left( {2;1; - 1} \right)\].

Ta có: \[R = IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( { - 1 - \left( { - 3} \right)} \right)}^2}} = \sqrt 6 .\]

Vậy phương trình mặt cầu đường kính \[AB\] là

\[{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\] hay \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z = 0.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP