Câu hỏi:
13/10/2024 21Trong không gian \[Oxyz\], cho mặt cầu \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\] có tâm và bán kính là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\]
\[ \Leftrightarrow {\left( {x - 2} \right)^2} + {y^2} + z{}^2 = 3\].
Vậy mặt cầu có tâm \[I\left( {2;0;0} \right)\] và bán kính \[R = \sqrt 3 \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]
Câu 2:
Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?
Câu 3:
Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu
Câu 4:
Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là
Câu 5:
III. Vận dụng
Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là
Câu 6:
Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]
Câu 7:
Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là
về câu hỏi!