Câu hỏi:

13/10/2024 139 Lưu

Trong không gian \[Oxyz\], cho mặt cầu \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\] có tâm và bán kính là

A. \[I\left( {2;0;0} \right),R = 3.\]

B. \[I\left( { - 2;0;0} \right),R = \sqrt 3 .\]

C. \[I\left( {0;2;0} \right),R = \sqrt 3 .\]

D. \[I\left( {2;0;0} \right),R = \sqrt 3 .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\]

\[ \Leftrightarrow {\left( {x - 2} \right)^2} + {y^2} + z{}^2 = 3\].

Vậy mặt cầu có tâm \[I\left( {2;0;0} \right)\] và bán kính \[R = \sqrt 3 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{x^2} + {y^2} + {z^2} - 2x = 0.\]

B. \[{x^2} + {y^2} - {z^2} + 2x - y + 1 = 0.\]

C. \[2{x^2} + {y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x + 1.\]

D. \[{\left( {x + y} \right)^2} = 2xy - {z^2} - 1.\]

Lời giải

Đáp án đúng là: A

Phương trình mặt cầu có dạng

\[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] với \[d = {a^2} + {b^2} + {c^2} - {R^2}.\]

Xét các đáp án, chỉ có đáp án A thỏa mãn, đồng thời ta có thể viết lại như sau:

\[{x^2} + {y^2} + {z^2} - 2x = 0\] hay \[{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1\].

Câu 2

A. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z = 0.\]

B. \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z = 0.\]

C. \[{x^2} + {y^2} + {z^2} - 2x - y + z - 6 = 0.\]

D. \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z + 6 = 0.\]

Lời giải

Đáp án đúng là: A

Tâm \[I\] của mặt cầu là trung điểm của \[AB\] do đó \[I\left( {2;1; - 1} \right)\].

Ta có: \[R = IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( { - 1 - \left( { - 3} \right)} \right)}^2}} = \sqrt 6 .\]

Vậy phương trình mặt cầu đường kính \[AB\] là

\[{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\] hay \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z = 0.\]

Câu 3

A. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{\sqrt {213} }}{3}.\]

B. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}.\]

C. \[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = \frac{{\sqrt {213} }}{3}.\]

D. \[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = \frac{{71}}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}.\]

B. \[\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + \left( {z - {z_0}} \right) = R.\]

C. \[\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + \left( {z - {z_0}} \right) = {R^2}.\]

D. \[{\left( {x - {x_0}} \right)^2} - {\left( {y - {y_0}} \right)^2} - {\left( {z - {z_0}} \right)^2} = {R^2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0.\]

B. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z + 6 = 0.\]

C. \[{x^2} + {y^2} + {z^2} + 2x - 6y + 4z + 14 = 0.\]

D. \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP