Câu hỏi:

13/10/2024 184 Lưu

Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]

A. \[m = 1.\]

B. \[m = - 1.\]

C. \[m = 0.\]

D. \[m = \pm 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} + 2x - 4y - 6z + m - 3 = 0\]

\[ \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 17 - m.\]

\[\left( S \right)\] là phương trình của mặt cầu thì \[17 - m > 0 \Leftrightarrow m < 17.\]

Khi đó mặt cầu có tâm \[I\left( { - 1;2;3} \right)\] và bán kính \[R = \sqrt {17 - m} \].

Để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo thiết diện là một đường tròn có chu vi bằng \[8\pi \] thì đường tròn đó có bán kính \[r = 4\].

Ta có: \[d\left( {I,\left( \beta \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 + 2.3 - 8} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 2\].

Ta có: \[{R^2} = {d^2}\left( {I,\left( \beta \right)} \right) + {r^2}\] \[ \Leftrightarrow 17 - m = 2 + 16\]\[ \Leftrightarrow m = - 1{\rm{ }}\left( {TM} \right).\]

</>

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{x^2} + {y^2} + {z^2} - 2x = 0.\]

B. \[{x^2} + {y^2} - {z^2} + 2x - y + 1 = 0.\]

C. \[2{x^2} + {y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x + 1.\]

D. \[{\left( {x + y} \right)^2} = 2xy - {z^2} - 1.\]

Lời giải

Đáp án đúng là: A

Phương trình mặt cầu có dạng

\[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] với \[d = {a^2} + {b^2} + {c^2} - {R^2}.\]

Xét các đáp án, chỉ có đáp án A thỏa mãn, đồng thời ta có thể viết lại như sau:

\[{x^2} + {y^2} + {z^2} - 2x = 0\] hay \[{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 1\].

Câu 2

A. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z = 0.\]

B. \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z = 0.\]

C. \[{x^2} + {y^2} + {z^2} - 2x - y + z - 6 = 0.\]

D. \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z + 6 = 0.\]

Lời giải

Đáp án đúng là: A

Tâm \[I\] của mặt cầu là trung điểm của \[AB\] do đó \[I\left( {2;1; - 1} \right)\].

Ta có: \[R = IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 0} \right)}^2} + {{\left( { - 1 - \left( { - 3} \right)} \right)}^2}} = \sqrt 6 .\]

Vậy phương trình mặt cầu đường kính \[AB\] là

\[{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6\] hay \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z = 0.\]

Câu 3

A. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{\sqrt {213} }}{3}.\]

B. \[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{71}}{3}.\]

C. \[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = \frac{{\sqrt {213} }}{3}.\]

D. \[{\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = \frac{{71}}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}.\]

B. \[\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + \left( {z - {z_0}} \right) = R.\]

C. \[\left( {x - {x_0}} \right) + \left( {y - {y_0}} \right) + \left( {z - {z_0}} \right) = {R^2}.\]

D. \[{\left( {x - {x_0}} \right)^2} - {\left( {y - {y_0}} \right)^2} - {\left( {z - {z_0}} \right)^2} = {R^2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0.\]

B. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z + 6 = 0.\]

C. \[{x^2} + {y^2} + {z^2} + 2x - 6y + 4z + 14 = 0.\]

D. \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP