Cho tứ diện \(ABCD\) có \(AB = AC = AD\) và \(\widehat {BAC} = \widehat {BAD} = 60^\circ \), \(\widehat {CAD} = 90^\circ \). Gọi \(I\) và \(J\) lần lượt là trung điểm của \(AB\) và \(CD\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {IJ} \) ?
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có:
\(\overrightarrow {IJ} = \frac{1}{2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right)\).
Vì tam giác \(ABC\) có \(AB = AC\) và \(\widehat {BAC} = 60^\circ \) nên tam giác \(ABC\) đều.
Suy ra \(CI \bot AB\).
Tương tự ta có tam giác \(ABD\) đều nên \(DI \bot AB\).
Xét: \(\overrightarrow {IJ} .\overrightarrow {AB} = \frac{1}{2}\left( {\overrightarrow {IC} + \overrightarrow {ID} } \right).\overrightarrow {AB} = \frac{1}{2}\overrightarrow {IC} .\overrightarrow {AB} + \frac{1}{2}\overrightarrow {ID} .\overrightarrow {AB} \) \( = \overrightarrow 0 \).
Suy ra \(\left( {\overrightarrow {IJ} ,\overrightarrow {AB} } \right) = 90^\circ \).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
a) Đúng.
b) Đúng. Do \(S.ABCD\) là chóp tứ giác đều nên \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|.\)
c) Đúng. Độ lớn của trọng lực \(\overrightarrow P \) tác động lên chiếc đèn chùm là: \(P = mg = 5.10 = 50N.\)
d) Sai. Ta có là hình chóp tứ giác đều ⇒ \(SA = SB = SC = SD\) và \(\widehat {ASC} = 60^\circ \) nên tam giác \(SAC\) đều.
Gọi \(O\) là trung điểm \(AC\).
Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với mọi lực hay \(4\overrightarrow {SO} = \overrightarrow P \) hay \(4SO = P\) ⇔ \(SO = 12,5\).
Xét tam giác đều \(SAC\) có \(SA = \frac{{\sqrt 3 }}{2}SO = \frac{{25\sqrt 3 }}{4}.\)
Vậy độ lớn của lực căng cho mỗi sợi xích là \(\frac{{25\sqrt 3 }}{4}N\)
Lời giải
Đáp án đúng là: B
Gọi
\(I\) là trung điểm \(B'C'\). Vì \(G'\) là trọng tâm tam giác \(A'B'C'\) \( \Rightarrow \overrightarrow {A'G'} = \frac{2}{3}\overrightarrow {A'I} .\)
Mặt khác \(\overrightarrow {AG'} = \overrightarrow {AA'} + \overrightarrow {A'G'} = \overrightarrow {AA'} + \frac{2}{3}\overrightarrow {A'I} = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {A'B'} + \overrightarrow {A'C'} } \right)\)
\( = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.