Câu hỏi:
14/10/2024 181Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {SA} \) và \(\overrightarrow {BC} \) ?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\overrightarrow {SA} .\overrightarrow {BC} = \overrightarrow {SA} \left( {\overrightarrow {SC} - \overrightarrow {SB} } \right) = \overrightarrow {SA} .\overrightarrow {SC} - \overrightarrow {SA} .\overrightarrow {SB} = SA.SC.\cos \widehat {ASC} - SA.SB.\cos \widehat {ASB}\) = 0.
⇒ \(\left( {\overrightarrow {SA} ,\overrightarrow {BC} } \right) = 90^\circ .\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
a) Đúng.
b) Đúng. Do \(S.ABCD\) là chóp tứ giác đều nên \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|.\)
c) Đúng. Độ lớn của trọng lực \(\overrightarrow P \) tác động lên chiếc đèn chùm là: \(P = mg = 5.10 = 50N.\)
d) Sai. Ta có là hình chóp tứ giác đều ⇒ \(SA = SB = SC = SD\) và \(\widehat {ASC} = 60^\circ \) nên tam giác \(SAC\) đều.
Gọi \(O\) là trung điểm \(AC\).
Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với mọi lực hay \(4\overrightarrow {SO} = \overrightarrow P \) hay \(4SO = P\) ⇔ \(SO = 12,5\).
Xét tam giác đều \(SAC\) có \(SA = \frac{{\sqrt 3 }}{2}SO = \frac{{25\sqrt 3 }}{4}.\)
Vậy độ lớn của lực căng cho mỗi sợi xích là \(\frac{{25\sqrt 3 }}{4}N\)
Lời giải
Đáp án đúng là: B
Gọi
\(I\) là trung điểm \(B'C'\). Vì \(G'\) là trọng tâm tam giác \(A'B'C'\) \( \Rightarrow \overrightarrow {A'G'} = \frac{2}{3}\overrightarrow {A'I} .\)
Mặt khác \(\overrightarrow {AG'} = \overrightarrow {AA'} + \overrightarrow {A'G'} = \overrightarrow {AA'} + \frac{2}{3}\overrightarrow {A'I} = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {A'B'} + \overrightarrow {A'C'} } \right)\)
\( = \overrightarrow {AA'} + \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {3\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.