Câu hỏi:

14/10/2024 371

Cho tứ diện \(ABCD\). Gọi \(E,F\) là các điểm lần lượt thuộc các cạnh \(AB,CD\) sao cho \(AE = \frac{1}{3}AB,CF = \frac{1}{3}CD\). Tìm giá trị \(k\) với \(k \in \mathbb{R}\) thỏa mãn đẳng thức:

\(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + k.\overrightarrow {BC} + \frac{1}{3}.\overrightarrow {AB} \).

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tứ diện  A B C D . Gọi  E , F  là các điểm lần lượt thuộc các cạnh  A B , C D  sao cho  AE = 1/3 AB , CF = 1/3 CD . Tìm giá trị  k  với  k ∈ R  thỏa mãn đẳng thức: (ảnh 1)

Ta có: \(\overrightarrow {EF} = \overrightarrow {EA} + \overrightarrow {AD} + \overrightarrow {DF} \)

= −\(\overrightarrow {AE} \) + \(\overrightarrow {AD} \) − \(\overrightarrow {FD} \)

= \(\overrightarrow {AD} \)− \(\frac{1}{3}\overrightarrow {AB} \) − \(\frac{2}{3}\overrightarrow {CD} \). (1)

Vậy \(\overrightarrow {EF} = \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \).

Ta có: \(\overrightarrow {EF} = \overrightarrow {EB} + \overrightarrow {BC} + \overrightarrow {CF} \)

= \(\frac{2}{3}\overrightarrow {AB} + \overrightarrow {CB} + \frac{1}{3}\overrightarrow {CD} \).

Vậy \(\overrightarrow {EF} = \overrightarrow {BC} + \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {CD} \). (2)

\(3\overrightarrow {EF} = \left( {\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} } \right) + 2\left( {\frac{2}{3}\overrightarrow {AB} + \overrightarrow {CB} + \frac{1}{3}\overrightarrow {CD} } \right)\)

= \(\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {CD} \) + \(\frac{4}{3}\overrightarrow {AB} + 2\overrightarrow {CB} + \frac{2}{3}\overrightarrow {CD} \)

= \(\overrightarrow {AD} \) + \(\left( { - \frac{1}{3}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AB} } \right)\) + \(\left( { - \frac{2}{3}\overrightarrow {CD} + \frac{2}{3}\overrightarrow {CD} } \right)\) + \(2\overrightarrow {CB} \)

= \(\overrightarrow {AD} \) + \(2\overrightarrow {CB} \) + \(\overrightarrow {AB} \)

⇒ \(\overrightarrow {EF} = \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} + \frac{1}{3}\overrightarrow {AB} \).

Vậy \(k = \frac{2}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

III. Vận dụng

Một chiếc đèn chùm treo có khối lượng \(m = 5\) kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích \(SA,SB,SC,SD\) sao cho \(S.ABCD\) là hình chóp tứ giác đều có \(\widehat {ASC} = 60^\circ \). Biết \(\overrightarrow P = m.\overrightarrow g \) trong đó \(\overrightarrow g \) là vectơ gia tốc rơi tự do có độ lớn \(10\)m/s2, \(\overrightarrow P \) là trọng lượng của vật có đơn vị kg.

Một chiếc đèn chùm treo có khối lượng  m = 5  kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích  S A , S B , S C , S D  sao cho  S . A B C D  là hình chóp tứ giác đều có  ˆ A S C = 60 ∘ . (ảnh 1)

Khi đó:

a) \(\overrightarrow {SA} ,\overrightarrow {SB} ,\overrightarrow {SC} ,\overrightarrow {SD} \) là 4 vectơ đồng phẳng.

b) \(\left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| = \left| {\overrightarrow {SD} } \right|.\)

c) Độ lớn của trọng lực \(\overrightarrow P \) tác động lên chiếc đèn chùm bằng \(50N\).

d) Độ lớn của lực căng cho mỗi sợi xích bằng \(\frac{{25\sqrt 3 }}{2}N\).

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 14/10/2024 33,492

Câu 2:

Cho hình lăng trụ \(ABC.A'B'C'\) đặt \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b ,\overrightarrow {AC} = \overrightarrow c .\) Gọi \(G'\) là trọng tâm của tam giác \(A'B'C'\). Vectơ \(\overrightarrow {AG'} \) bằng

Xem đáp án » 14/10/2024 5,368

Câu 3:

Cho hình chóp \(S.ABC\) có \(AB = 4\), \(\widehat {BAC} = 60^\circ \), \(\overrightarrow {AB} .\overrightarrow {AC} = 6\). Khi đó độ dài \(\overrightarrow {AC} \) là

Xem đáp án » 14/10/2024 4,005

Câu 4:

Cho hình lập phương \(ABCD.EFGH\) có cạnh bằng \(a\). Ta có: \(\overrightarrow {AB} .\overrightarrow {EG} \) bằng:

Xem đáp án » 14/10/2024 3,543

Câu 5:

I. Nhận biết

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).

Cho hình hộp chữ nhật  A B C D . A ′ B ′ C ′ D ′ .    Vectơ nào sau đây cùng phương với  −−→ B C  ? (ảnh 1)

Vectơ nào sau đây cùng phương với \(\overrightarrow {BC} \) ?

Xem đáp án » 14/10/2024 3,088

Câu 6:

Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4\); \(\left| {\overrightarrow b } \right| = 3\); \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Chọn khẳng định đúng ?

Xem đáp án » 14/10/2024 1,973

Câu 7:

Cho hình lập phương \(ABCD.A'B'C'D'\). Khẳng định nào sau đây là sai?

Xem đáp án » 14/10/2024 792

Bình luận


Bình luận