Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \(A\left( {1;2; - 1} \right)\), \(B\left( {2; - 1;3} \right)\), \(C\left( { - 4;7;5} \right)\). Gọi \(D\left( {a;b;c} \right)\) là chân đường phân giác trong góc \(B\) của tam giác \(ABC\). Giá trị \(a + b + 2c\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \(\overrightarrow {AB} = \left( {1; - 3;4} \right)\) \( \Rightarrow AB = \sqrt {{1^2} + {{\left( { - 3} \right)}^2} + {4^2}} = \sqrt {26} \).
\(\overrightarrow {BC} = \left( { - 6;8;2} \right)\) \( \Rightarrow BC = \sqrt {{{\left( { - 6} \right)}^2} + {8^2} + {2^2}} = 2\sqrt {26} \).
Gọi \(D\left( {x;y;z} \right)\), theo tính chất phân giác ta có:
\(\frac{{DA}}{{DC}} = \frac{{BA}}{{BC}} = \frac{1}{2} \Rightarrow DA = \frac{1}{2}DC \Rightarrow \overrightarrow {DA} = - \frac{1}{2}\overrightarrow {DC} \).
Có: \(\overrightarrow {DA} = \left( {1 - x;2 - y; - 1 - z} \right)\); \(\overrightarrow {DC} = \left( { - 4 - x;7 - y;5 - z} \right)\).
Suy ra \(\left\{ \begin{array}{l}1 - x = - \frac{1}{2}\left( { - 4 - x} \right)\\2 - y = - \frac{1}{2}\left( {7 - y} \right)\\ - 1 - z = - \frac{1}{2}\left( {5 - z} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = - \frac{2}{3}\\y = \frac{{11}}{3}\\z = 1\end{array} \right.\).
Suy ra \(D\left( { - \frac{2}{3};\frac{{11}}{3};1} \right)\) \( \Rightarrow a + b + 2c = 5.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
a) Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\) nên ý a đúng.
b) Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\) nên ý b sai.
c)Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất
\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\) (km).
Do đó, ý c sai.
d) Khoảng cách hai chiếc khinh khí cầu là
\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} = 3,92\) (km).
Do đó, ý d đúng.
Lời giải
Đáp án đúng là: A
Ta có: \(\overrightarrow {AB} = \left( {1;5; - 2} \right)\), \(\overrightarrow {AC} = \left( {5;4; - 1} \right)\).
Do đó, \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.5 + 5.4 + \left( { - 2} \right)\left( { - 1} \right)}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{5^2} + {4^2} + {{\left( { - 1} \right)}^2}} }} = \)\(\frac{9}{{2\sqrt {35} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.