Câu hỏi:

14/10/2024 64

Trong không gian \[Oxyz\], cho điểm \[H\left( {1;2; - 2} \right)\]. Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,Oy,Oz\] tại \[A,B,C\] sao cho \[H\] là trực tâm của tam giác \[ABC\]. Viết phương trình mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\].

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Trong không gian  O x y z , cho điểm  H ( 1 ; 2 ; − 2 ) . Mặt phẳng  ( α )  đi qua  H  và cắt các trục  O x , O y , O z  tại  A , B , C  sao cho  H  là trực tâm của tam giác  A B C . Viết phương trình mặt cầu tâm  O  và tiếp xúc với mặt phẳng  ( α ) . (ảnh 1)

Ta có

\[H\] là trực tâm của tam giác \[ABC\], suy ra \[OH \bot \left( {ABC} \right)\].

Thật vậy:

\[\left\{ \begin{array}{l}OC \bot OA\\OC \bot OB\end{array} \right. \Rightarrow OC \bot AB\] (1)

Mà \[CH \bot AB\] (vì \[H\] là trực tâm tam giác \[ABC\]) (2).

Từ (1) và (2) suy ra \[AB \bot \left( {OHC} \right)\]\[ \Rightarrow AB \bot OH\].

Tương tự, ta suy ra \[BC \bot \left( {OAH} \right)\]\[ \Rightarrow BC \bot OH.\]

Từ đây suy ra \[OH \bot \left( {ABC} \right).\]

Khi đó, mặt cầu tâm \[O\] tiếp xúc mặt phẳng \[\left( {ABC} \right)\] có bán kính \[R = OH = 3.\]

Vậy mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\] là \[{x^2} + {y^2} + {z^2} = 9.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?

Xem đáp án » 14/10/2024 350

Câu 2:

II. Thông hiểu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\] và một điểm \[M\left( {4;2; - 2} \right)\]. Mệnh đề nào sau đây là đúng?

Xem đáp án » 14/10/2024 299

Câu 3:

Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 2x + 10y + 3z + 1 = 0\] đi qua điểm có tọa độ nào sau đây

Xem đáp án » 14/10/2024 154

Câu 4:

Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu

Xem đáp án » 14/10/2024 151

Câu 5:

Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]

Xem đáp án » 14/10/2024 142

Câu 6:

Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?

Xem đáp án » 14/10/2024 140

Câu 7:

Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là

Xem đáp án » 14/10/2024 139

Bình luận


Bình luận