Câu hỏi:

14/10/2024 150 Lưu

Trong không gian \[Oxyz\], cho điểm \[H\left( {1;2; - 2} \right)\]. Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,Oy,Oz\] tại \[A,B,C\] sao cho \[H\] là trực tâm của tam giác \[ABC\]. Viết phương trình mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\].

A. \[{x^2} + {y^2} + {z^2} = 81.\]

B. \[{x^2} + {y^2} + {z^2} = 1.\]

C. \[{x^2} + {y^2} + {z^2} = 9.\]

D. \[{x^2} + {y^2} + {z^2} = 25.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Trong không gian  O x y z , cho điểm  H ( 1 ; 2 ; − 2 ) . Mặt phẳng  ( α )  đi qua  H  và cắt các trục  O x , O y , O z  tại  A , B , C  sao cho  H  là trực tâm của tam giác  A B C . Viết phương trình mặt cầu tâm  O  và tiếp xúc với mặt phẳng  ( α ) . (ảnh 1)

Ta có

\[H\] là trực tâm của tam giác \[ABC\], suy ra \[OH \bot \left( {ABC} \right)\].

Thật vậy:

\[\left\{ \begin{array}{l}OC \bot OA\\OC \bot OB\end{array} \right. \Rightarrow OC \bot AB\] (1)

Mà \[CH \bot AB\] (vì \[H\] là trực tâm tam giác \[ABC\]) (2).

Từ (1) và (2) suy ra \[AB \bot \left( {OHC} \right)\]\[ \Rightarrow AB \bot OH\].

Tương tự, ta suy ra \[BC \bot \left( {OAH} \right)\]\[ \Rightarrow BC \bot OH.\]

Từ đây suy ra \[OH \bot \left( {ABC} \right).\]

Khi đó, mặt cầu tâm \[O\] tiếp xúc mặt phẳng \[\left( {ABC} \right)\] có bán kính \[R = OH = 3.\]

Vậy mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\] là \[{x^2} + {y^2} + {z^2} = 9.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Giả sử \[M\left( {x;y;z} \right).\]

Ta có: \[M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\];

\[M{B^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2}\];

\[M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\].

Có \[M{A^2} = M{B^2} + M{C^2}\]

\[ \Leftrightarrow {\left( {x - 1} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2}\].

\[ \Leftrightarrow {x^2} + 2x - 1 + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 0\]

\[ \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\].

Vậy tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính \[R = \sqrt 2 .\]

Câu 2

A. Điểm M là tâm của mặt cầu (S).

B. Điểm M nằm trên mặt cầu (S).

C. Điểm M nằm trong mặt cầu (S).

D. Điểm M nằm ngoài mặt cầu (S).

Lời giải

Đáp án đúng là: C

Ta có: \[{x^2} + {y^2} + {z^2} - 4x - 2y + 2z - 3 = 0\]

\[{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 9\].

Do đó, tâm của mặt cầu là \[I\left( {2;1; - 1} \right)\].

Thay \[M\left( {4;2; - 2} \right)\] vào phương trình mặt cầu, ta được

\[{\left( {4 - 2} \right)^2} + {\left( {2 - 1} \right)^2} + {\left( { - 2 + 1} \right)^2} = 6 < 9\].

Do đó điểm M nằm trong mặt cầu.

Câu 3

A. \[{x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0.\]

B. \[{x^2} + {y^2} + {z^2} + 4x - 2y + 2z + 6 = 0.\]

C. \[{x^2} + {y^2} + {z^2} + 2x - 6y + 4z + 14 = 0.\]

D. \[{x^2} + {y^2} + {z^2} + 8x - 6y + 2z - 10 = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Tâm \[I\left( { - 4;3; - 1} \right)\] và bán kính \[R = 6.\]

B. Tâm \[I\left( { - 4;3; - 1} \right)\] và bán kính \[R = 36.\]

C. Tâm \[I\left( {4; - 3;1} \right)\] và bán kính \[R = 6.\]

D. Tâm \[I\left( {4; - 3;1} \right)\] và bán kính \[R = 36.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[a + b + c - d > 0.\]

B. \[{a^2} + {b^2} + {c^2} + d > 0.\]

C. \[{a^2} + {b^2} + {c^2} - d > 0.\]

D. \[{a^2} + {b^2} + {c^2} - d \ge 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( {3; - 2; - 4} \right).\]

B. \[\left( {4; - 1;0} \right).\]

C. \[\left( {2;1;9} \right).\]

D. \[\left( { - 1;3; - 1} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP