Câu hỏi:

17/10/2024 293

Trục căn thức ở mẫu của \(\frac{{x + \sqrt 5 }}{{\sqrt x }}\) ta được

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \[\frac{{x + \sqrt 5 }}{{\sqrt x }} = \frac{{\left( {x + \sqrt 5 } \right)\sqrt x }}{{\sqrt x \cdot \sqrt x }} = \frac{{\sqrt x \left( {x + \sqrt 5 } \right)}}{x}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Với \(a = \sqrt 2 \), ta có: \(\sqrt {{{\left( {\sqrt 2 - \sqrt 3 } \right)}^2}} + \sqrt 2 \)

\( = \left| {\sqrt 2 - \sqrt 3 } \right| + \sqrt 2 \)

\( = \sqrt 3 - \sqrt 2 + \sqrt 2 \)\( = \sqrt 3 \).

Câu 2

Lời giải

Đáp án đúng là: B

Ta có \(\sqrt {{A^2}B} = \sqrt {{A^2}} .\sqrt B = \left| A \right|\sqrt B = - A\sqrt B \) (do \(A < 0\)).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP