Một ô tô phải đi quãng đường AB dài \(60\) km trong một thời gian nhất định. Xe đi nửa đầu quãng đường với vận tốc hơn dự định \(10\) km/h và đi nửa sau kém hơn dự định \(6\) km/h. Biết ô tô đến đúng dự định. Tính thời gian dự định đi quãng đường AB ?
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi vận tốc ô tô dự định đi quãng đường AB là: \(x\) (km/h) (x > \(6\))
Xe đi nửa quãng đường đầu với vận tốc là: \(x + 10\) (km/h)
Xe đi nửa quãng đường sau với vận tốc là: \(x - 6\) (km/h)
Theo bài ra ta có:
\(\frac{{60}}{x} = \frac{{30}}{{x + 10}} + \frac{{30}}{{x - 6}}\)
\(\frac{2}{x} = \frac{1}{{x + 10}} + \frac{1}{{x - 6}}\)
\(\frac{{2\left( {x + 10} \right)\left( {x - 6} \right)}}{{x\left( {x + 10} \right)\left( {x - 6} \right)}} = \frac{{x\left( {x - 6} \right)}}{{x + 10}} + \frac{{x\left( {x + 10} \right)}}{{x - 6}}\)
\(2\left( {x + 10} \right)\left( {x - 6} \right) = x\left( {x - 6} \right) + x\left( {x + 10} \right)\)
\(2{x^2} + 8x - 120 = {x^2} - 6x + {x^2} + 10x\)
\(4x = 120\)
\(x = 30\)(thỏa mãn điều kiện)
Vậy thời gian dự định đi quãng đường AB là: \(60:30 = 2\) (giờ)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có \(\left( {{x^2} - 9} \right)\left( {4 - x} \right) = 0\)
\({x^2} - 9 = 0\) hoặc \(4 - x = 0\)
\(x = 3\) hoặc \(x = - 3\) hoặc \(x = 4.\)
Vậy phương trình đã cho có ba nghiệm là \(x = - 3;\,x = 3\) và \(x = 4.\)
Lời giải
Đáp án đúng là: C
Điều kiện xác định của phương trình là \(x - 2 \ne 0\) và \(x \ne 0\)hay \(x \ne 2\) và \(x \ne 0.\)
Vậy điều kiện xác định của phương trình là \(x \ne 2\) và \(x \ne 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.