Câu hỏi:

25/10/2024 176

III. Vận dụng

Tích các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\)

\(\left[ {\left( {x + 2} \right)\left( {x + 6} \right)} \right]\left[ {\left( {x + 5} \right)\left( {x + 6} \right)} \right] = 504\)

\(\left( {{x^2} + 8x + 12} \right)\left( {{x^2} + 8x + 15} \right) = 504\,\,\,\left( * \right)\)

Đặt \(t = {x^2} + 8x\), phương trình \(\left( * \right)\) trở thành \(\left( {t + 12} \right)\left( {t + 15} \right) = 420\)

\({t^2} + 27t + 180 = 504\)

\({t^2} + 27t - 324 = 0\)

\(\left( {t - 9} \right)\left( {t + 36} \right) = 0\)

\(t = 9\) hoặc \(t = - 32.\)

Ta xét hai trường hợp sau:

Với \(t = 9\) ta có:

\({x^2} + 8x = 9\)

\({x^2} + 8x - 9 = 0\)

\(\left( {x - 1} \right)\left( {x + 9} \right) = 0\)

\(x = 1\) hoặc \(x = - 9.\)

Với \(t = - 32\) ta có:

\({x^2} + 8x = - 32\)

\({x^2} + 8x + 32 = 0\)

\(\left( {{x^2} + 8x + 16} \right) + 16 = 0\)

\({\left( {x + 4} \right)^2} + 16 = 0\,\,\,\left( {***} \right)\)

Vì \({\left( {x + 4} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R},\) nên phương trình \(\left( {***} \right)\) vô nghiệm.

Vậy tích các nghiệm của phương trình đã cho là: \(1.\left( { - 9} \right) = - 9.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi năng suất dự định là \(x\) (sản phẩm/giờ, \(x \in {\mathbb{N}^*}\))

Thời gian dự định làm \(70\) sản phẩm là \(\frac{{70}}{x}\) (giờ).

Thời gian thực tế làm \(80\) sản phẩm với năng suất \(x + 5\) (sản phẩm/giờ) là \(\frac{{81}}{{x + 5}}\) (giờ).

Theo đề bài, công nhân hoàn thành trước kế hoạch \(40\) phút (\( = \frac{2}{3}\) giờ).

Ta có phương trình \(\frac{{70}}{x} - \frac{{80}}{{x + 5}} = \frac{2}{3}\)

\(\frac{{35}}{x} - \frac{{40}}{{x + 5}} = \frac{1}{3}\)

\(\frac{{35.3\left( {x + 5} \right)}}{x} - \frac{{40.3.x}}{{x + 5}} = \frac{{1.x.\left( {x + 5} \right)}}{3}\)

\(105\left( {x + 5} \right) - 120x = x\left( {x + 5} \right)\)

\({x^2} + 5x - 105x - 525 + 120x = 0\)

\({x^2} + 20x - 525 = 0.\,\,\,\left( 1 \right)\)

Phương trình \(\left( 1 \right)\) có \(\Delta  = {20^2} - 4.\left( { - 525} \right) = 2\,\,500 > 0\) nên phương trình có hai nghiệm phân biệt

Câu 2

Phương trình \({x^2} - 7x + 12 = 0\) có tổng hai nghiệm là

Lời giải

Đáp án đúng là: B

Phương trình \({x^2} - 7x + 12 = 0\) có \(\Delta = {\left( { - 7} \right)^2} - 4.1.12 = 1 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{7 - 1}}{2};\,\,{x_2} = \frac{{7 + 1}}{2} = 4.\)

Vậy tổng hai nghiệm của phương trình là \(3 + 4 = 7.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

I. Nhận biết

Phương trình nào dưới đây là phương trình bậc hai một ẩn?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phương trình \(9{x^2} - 30x + 25 = 0\) có nghiệm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

II. Thông hiểu

Nghiệm của phương trình \(2{x^2} - 5x + 2 = 0\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay