Câu hỏi:

07/11/2024 295 Lưu

Một đội xe cần phải chuyên chở \(150\) tấn hàng. Hôm làm việc có \(5\) xe được điều đi làm việc khác nên mỗi xe còn lại phải chở thêm \(5\) tấn. Nếu gọi số xe ban đầu là \(x\). Phương trình của bài toán này là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi số xe ban đầu là \(x\) (xe) \(\left( {x > 0,\,\,x \in {\mathbb{N}^*}} \right)\).

Trong thực tế, số xe là \(x - 5\) (xe)

Trong dự định, số hàng mỗi xe chở là \(\frac{{150}}{x}\) (tấn)

Trong thực tế, mỗi xe chờ được số tấn hàng là \(\frac{{150}}{{x - 5}}\) (tấn)

Vì trong thực tế, mỗi xe còn lại phải chở thêm \(5\) tấn nên ta có phương trình: \(\frac{{150}}{{x - 5}} - \frac{{150}}{x} = 5.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đổi \(20\) phút = \(\frac{1}{3}\) (giờ).

Gọi vận tốc dự định của bác An đi từ nhà đến nơi làm việc là \(x\)(km/h) \(\left( {x > 10} \right)\)

Thời gian bác An dự định đi từ nhà đến nơi làm việc là \(\frac{{60}}{x}\) (giờ).

Thời gian bác An đi trong \(\frac{1}{3}\) quãng đường đầu là \(\frac{{20}}{x}\) (giờ).

Thời gian bác An đi \(\frac{2}{3}\) quãng đường còn lại là \(\frac{{40}}{{x - 10}}\) (giờ).

Theo bài ra ta có phương trình:

\(\frac{{20}}{x} + \frac{{40}}{{x - 10}} = \frac{{60}}{x} + \frac{1}{3}\)

\(\frac{{40}}{{x - 10}} = \frac{{40}}{x} + \frac{1}{3}\)

\(40x \cdot 3 = 40 \cdot 3 \cdot \left( {x - 10} \right) + x\left( {x - 10} \right)\)

\(120x = 120x - 1200 + {x^2} - 10x\)

\({x^2} - 10x - 1200 = 0\)

Ta có \(\Delta ' = {\left( { - 5} \right)^2} - 1 \cdot \left( { - 1\,\,200} \right) = 1\,\,225\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{5 + \sqrt {1225} }}{1} = 40\) (thỏa mãn điều kiện); \({x_1} = \frac{{5 - \sqrt {1225} }}{1} = - 30\) (không thỏa mãn điều kiện)

Vậy vận tốc dự định của bác An khi đi từ nhà đến nơi làm việc là \(40\) km/h.

Lời giải

Đáp án đúng là: D

Gọi vận tốc của ca nô trong nước yên lặng là \(x\) (km/h) với \(x > 4\).

Vận tốc ca nô khi nước xuôi dòng là \(x + 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x + 4}}\) (h)

Vận tốc canô khi nước ngược dòng là \(x - 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x - 4}}\) (h)

Theo giả thiết ta có phương trình \(\frac{{48}}{{x + 4}} + \frac{{48}}{{x - 4}} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP