Câu hỏi:

07/11/2024 184

Giải một bài toán bằng cách lập phương trình có bao nhiêu bước?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Các bước giải một bài toán bằng cách lập phương trình:

Bước 1. Lập phương trình:

− Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số.

− Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

− Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải phương trình

Bước 3. Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận.

Vậy có 3 bước giải một bài toán bằng cách lập phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đổi \(20\) phút = \(\frac{1}{3}\) (giờ).

Gọi vận tốc dự định của bác An đi từ nhà đến nơi làm việc là \(x\)(km/h) \(\left( {x > 10} \right)\)

Thời gian bác An dự định đi từ nhà đến nơi làm việc là \(\frac{{60}}{x}\) (giờ).

Thời gian bác An đi trong \(\frac{1}{3}\) quãng đường đầu là \(\frac{{20}}{x}\) (giờ).

Thời gian bác An đi \(\frac{2}{3}\) quãng đường còn lại là \(\frac{{40}}{{x - 10}}\) (giờ).

Theo bài ra ta có phương trình:

\(\frac{{20}}{x} + \frac{{40}}{{x - 10}} = \frac{{60}}{x} + \frac{1}{3}\)

\(\frac{{40}}{{x - 10}} = \frac{{40}}{x} + \frac{1}{3}\)

\(40x \cdot 3 = 40 \cdot 3 \cdot \left( {x - 10} \right) + x\left( {x - 10} \right)\)

\(120x = 120x - 1200 + {x^2} - 10x\)

\({x^2} - 10x - 1200 = 0\)

Ta có \(\Delta ' = {\left( { - 5} \right)^2} - 1 \cdot \left( { - 1\,\,200} \right) = 1\,\,225\)

Suy ra phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{5 + \sqrt {1225} }}{1} = 40\) (thỏa mãn điều kiện); \({x_1} = \frac{{5 - \sqrt {1225} }}{1} = - 30\) (không thỏa mãn điều kiện)

Vậy vận tốc dự định của bác An khi đi từ nhà đến nơi làm việc là \(40\) km/h.

Lời giải

Đáp án đúng là: D

Gọi vận tốc của ca nô trong nước yên lặng là \(x\) (km/h) với \(x > 4\).

Vận tốc ca nô khi nước xuôi dòng là \(x + 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x + 4}}\) (h)

Vận tốc canô khi nước ngược dòng là \(x - 4\) (km/h)

Thời gian canô chạy khi nước xuôi dòng là \(\frac{{48}}{{x - 4}}\) (h)

Theo giả thiết ta có phương trình \(\frac{{48}}{{x + 4}} + \frac{{48}}{{x - 4}} = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP