Câu hỏi:
12/11/2024 420Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình vuông \[ABCD.\]
Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]
Do đó \[OA = OC\] và \[OB = OD.\]
Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình vuông \[ABCD\]).
Vì vậy \[OA = OC = OB = OD.\]
Vậy bốn điểm \[A,B,C,D\] của hình vuông \[ABCD\] cùng thuộc đường tròn tâm \[O\] bán kính \[OA.\]
Ta có \[AB = BC = a\] (do \[ABCD\] là hình vuông cạnh \[a\]).
Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[B,\] ta được:
\[A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}.\]
Suy ra \[AC = a\sqrt 2 .\] Do đó \[OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}.\]
Vậy đường tròn đi qua cả bốn đỉnh của hình vuông \[ABCD\] cạnh \[a\] có tâm là giao điểm của hai đường chéo \[AC,\,\,BD\] và bán kính \[R = \frac{{a\sqrt 2 }}{2}.\]
Do đó ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi \[M\] là trung điểm \[OA.\]
⦁ Vì đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm \[M\] của \[OA\] nên đường thẳng \[d\] là đường trung trực của đoạn \[OA.\]
Do đó đường thẳng \[d\] là trục đối xứng của đoạn \[OA.\] Vì vậy phương án A đúng.
⦁ Xét \[\Delta OBM\] và \[\Delta ABM,\] có:
\[\widehat {BMO} = \widehat {BMA} = 90^\circ ;\] \[BM\] là cạnh chung; \[OM = AM\] (do \[M\] là trung điểm \[OA\])
Do đó \[\Delta OBM = \Delta ABM\] (c.g.c)
Suy ra \[OB = AB\] (cặp cạnh tương ứng)
Mà tam giác \[OAB\] cân tại \(O\) (do \[OA = OB)\] nên tam giác \[OAB\] đều. Vì vậy phương án B đúng.
⦁ Ta có \[OA = OB = 3{\rm{\;(cm)}}\]. Vì \[M\] là trung điểm \[OA\] nên \[OM = \frac{{OA}}{2} = \frac{3}{2}{\rm{\;(cm)}}{\rm{.}}\]
Áp dụng định lí Pythagore cho tam giác \[OBM\] vuông tại \[M,\] ta được: \[O{B^2} = B{M^2} + O{M^2}\]
Suy ra \[B{M^2} = O{B^2} - O{M^2} = {3^2} - {\left( {\frac{3}{2}} \right)^2} = \frac{{27}}{4}\]. Do đó \[BM = \frac{{3\sqrt 3 }}{2}{\rm{\;(cm)}}{\rm{.}}\]
Vì đường thẳng \[OA\] là trục đối xứng của \[\left( O \right)\] nên điểm đối xứng với điểm \[B\] qua đường thẳng \[OA\] phải vừa thuộc \[\left( O \right)\], vừa thuộc đường vuông góc hạ từ \[B\] xuống \[OA.\]
Tức là \[M\] là trung điểm của \(BC\) nên \[BC = 2BM = 2 \cdot \frac{{3\sqrt 3 }}{2} = 3\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\] Vì vậy phương án C đúng.
Vậy ta chọn phương án D.
Lời giải
Đáp án đúng là: B
Vì đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( {O;R} \right)\] tại hai điểm \[A,C\] nên \[OA = OC = R\].
Chứng minh tương tự, ta được \[OB = OD = R\].
Do đó tứ giác \[ABCD\] có hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm \(O\) của mỗi đường nên là hình bình hành.
Mà \[AC = BD = 2R\] nên tứ giác \[ABCD\] là hình chữ nhật.
Do đó ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.