Câu hỏi:

12/11/2024 352

Cho hình vuông \[ABCD\] cạnh \[a.\] Khẳng định nào sau đây đúng?

Đáp án chính xác

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho hình vuông  A B C D  cạnh  a .  Khẳng định nào sau đây đúng? (ảnh 1)

Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình vuông \[ABCD.\]

Suy ra \[O\] là trung điểm của \[AC\] và \[BD.\]

Do đó \[OA = OC\] và \[OB = OD.\]

Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình vuông \[ABCD\]).

Vì vậy \[OA = OC = OB = OD.\]

Vậy bốn điểm \[A,B,C,D\] của hình vuông \[ABCD\] cùng thuộc đường tròn tâm \[O\] bán kính \[OA.\]

Ta có \[AB = BC = a\] (do \[ABCD\] là hình vuông cạnh \[a\]).

Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[B,\] ta được:

\[A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}.\]

Suy ra \[AC = a\sqrt 2 .\] Do đó \[OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}.\]

Vậy đường tròn đi qua cả bốn đỉnh của hình vuông \[ABCD\] cạnh \[a\] có tâm là giao điểm của hai đường chéo \[AC,\,\,BD\] và bán kính \[R = \frac{{a\sqrt 2 }}{2}.\]

Do đó ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?

Xem đáp án » 12/11/2024 1,357

Câu 2:

Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?

Xem đáp án » 12/11/2024 1,168

Câu 3:

Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng

Xem đáp án » 12/11/2024 893

Câu 4:

Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]

Xem đáp án » 12/11/2024 878

Câu 5:

II. Thông hiểu

Cho tam giác \(ABC\) vuông tại \(A\) có \(BC = 12{\rm{\;cm}}.\) Bán kính đường tròn đi qua ba đỉnh của tam giác đó bằng

Xem đáp án » 12/11/2024 712

Câu 6:

III. Vận dụng

Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng

Xem đáp án » 12/11/2024 684

Câu 7:

Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn?

Xem đáp án » 12/11/2024 435
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua