Câu hỏi:
12/11/2024 18Cho hình vuông \[ABCD\] có \[E\] là giao điểm của hai đường chéo. Kết luận nào sau đây sai?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
⦁ Ta có \[E\] là giao điểm của hai đường chéo \[AC\] và \[BD\] của hình vuông \[ABCD.\]
Suy ra \[E\] là trung điểm của \[AC\] và \[BD.\]
Do đó \[EA = EC\] và \[EB = ED.\]
Mà \[AC = BD\] (do \[AC\] và \[BD\] là hai đường chéo của hình vuông \[ABCD\]).
Vì vậy \[EA = EC = EB = ED.\]
Vậy bốn điểm \[A,B,C,D\] của hình vuông \[ABCD\] cùng thuộc đường tròn tâm \[E\] bán kính \[EA.\]
Do đó phương án A đúng.
⦁ Ta có điểm \[E\] là tâm đường tròn đi qua bốn điểm \[A,B,C,D\] nên \(E\) là tâm đối xứng của đường tròn đó.
Do đó phương án B đúng.
⦁ Vì \[AC,BD\] đều đi qua tâm \[E\] của đường tròn \[\left( {E;EA} \right)\] nên \[AC,BD\] đều là trục đối xứng của đường tròn \[\left( {E;EA} \right).\]
Do đó phương án C đúng, phương án D sai.
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn \[\left( {O;R} \right)\] và ba điểm \[A,B,C\] thuộc đường tròn đó sao cho \[\Delta ABC\] cân tại \[A.\] Giả sử \[BC = 6{\rm{\;cm}},\] đường cao \[AM\] của \[\Delta ABC\] bằng \[4{\rm{\;cm}}.\] Gọi \[B'\] là điểm đối xứng với \[B\] qua \[O.\] Kẻ \[AH \bot CB'\] tại \[H.\] Khi đó chu vi tứ giác \[AHCM\] bằng
Câu 2:
Cho đường tròn \[\left( {O;3{\rm{\;cm}}} \right)\] và điểm \[A \in \left( O \right).\] Đường thẳng \[d\] vuông góc với \[OA\] tại trung điểm của \[OA\] cắt đường tròn \[\left( O \right)\] tại \[B\] và \[C.\] Kết luận nào sau đây đúng nhất?
Câu 3:
Cho \[\Delta ABC\] cân tại \[A,\] vẽ hai đường cao \[BE\] và \[CF\] cắt nhau tại \[H.\] Gọi \[I,K\] lần lượt là hai điểm trên \[BH,CH\] sao cho \[HI = HE,HK = HF.\] Gọi \[M\] là trung điểm của \[AH.\] Khi đó \[\Delta ABC\] cần điều kiện gì để điểm \[M\] thuộc đường tròn đi qua bốn điểm \[E,F,I,K?\]
Câu 4:
Cho đường tròn \[\left( {O;R} \right).\] Đường thẳng \[d\] đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[A,C.\] Đường thẳng \[d'\] (khác \[d\]) đi qua tâm \[O,\] cắt đường tròn \[\left( O \right)\] tại hai điểm \[B,D.\] Khi đó tứ giác \[ABCD\] là hình gì?
Câu 6:
III. Vận dụng
Cho tam giác \[ABC\] cân tại \[A\] có \[\widehat {A\,} = 120^\circ .\] Biết rằng các đỉnh của tam giác nằm trên đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}.\] Khi đó diện tích tam giác \[ABC\] bằng
về câu hỏi!