Câu hỏi:

12/11/2024 529 Lưu

Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là

A. tiếp xúc trong.

B. \(\left( I \right)\) đựng \(\left( O \right).\)
C. cắt nhau.
D. \(\left( O \right)\) đựng \(\left( I \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Bán kính của đường tròn \(\left( O \right)\) là: \(7:2 = 3,5{\rm{\;(cm)}}{\rm{.}}\)

Ta có \(OI = 1{\rm{\;cm}} < 4{\rm{\;cm}} - 3,5{\rm{\;cm}}\)

Do đó đường tròn \(\left( I \right)\) đựng đường tròn \(\left( O \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O )  có bán kính  R = 5 c m .  Khoảng cách từ tâm đến dây  A B  là  3 c m .  Độ dài dây  A B  bằng (ảnh 1)

Kẻ \[OH \bot AB\] tại \[H.\]

Vì khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}\] nên ta có \[OH = 3{\rm{\;cm}}.\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được: \[O{H^2} + H{B^2} = O{B^2}.\]

Suy ra \[H{B^2} = O{B^2} - O{H^2} = {R^2} - O{H^2} = {5^2} - {3^2} = 16\]. Do đó \[HB = 4{\rm{\;(cm)}}{\rm{.}}\]

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Suy ra \[AB = 2 \cdot HB = 2 \cdot 4 = 8{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án B.

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  có hai dây  A B , C D  vuông góc với nhau tại  M .  Giả sử  A B = 16 c m , C D = 12 c m , M C = 2 c m .  Kẻ  O H ⊥ A B  tại  H ,   O K ⊥ C D  tại  K .  Khi đó diện tích tứ giác  O H M K  bằng (ảnh 1)

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R)\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HA = HB = \frac{{AB}}{2} = \frac{{16}}{2} = 8{\rm{\;(cm)}}{\rm{.}}\]

Chứng minh tương tự, ta được \[KC = KD = \frac{{CD}}{2} = \frac{{12}}{2} = 6{\rm{\;(cm)}}{\rm{.}}\]

Ta có \[KC = KM + MC.\] Suy ra \[KM = KC - MC = 6 - 2 = 4{\rm{\;(cm)}}{\rm{.}}\]

Tứ giác \[OHMK\] có: \[\widehat {OKM} = \widehat {KMH} = \widehat {OHM} = 90^\circ \] nên tứ giác \[OHMK\] là hình chữ nhật.

Do đó \[OH = KM = 4{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được:

\[O{B^2} = O{H^2} + H{B^2} = {4^2} + {8^2} = 80\]. Suy ra \[R = OB = 4\sqrt 5 {\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OKD\] vuông tại \[K,\] ta được: \[O{D^2} = O{K^2} + K{D^2}.\]

Suy ra \[O{K^2} = O{D^2} - K{D^2} = {R^2} - K{D^2} = {\left( {4\sqrt 5 } \right)^2} - {6^2} = 44\]

Do đó \[OK = 2\sqrt {11} {\rm{\;(cm)}}{\rm{.}}\]

Vậy diện tích hình chữ nhật \[OHMK\] là: \[S = KM \cdot OK = 4 \cdot 2\sqrt {11} = 8\sqrt {11} {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Đường tròn không có trục đối xứng.

B. Đường tròn có duy nhất một trục đối xứng.

C. Đường tròn có hai trục đối xứng là hai đường thẳng đi qua tâm và vuông góc với nhau.

D. Đường tròn có vô số trục đối xứng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP