Câu hỏi:

12/11/2024 112

III. Vận dụng

Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] bằng

Đáp án chính xác

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  có hai dây  A B , C D  vuông góc với nhau tại  M .  Giả sử  A B = 16 c m , C D = 12 c m , M C = 2 c m .  Kẻ  O H ⊥ A B  tại  H ,   O K ⊥ C D  tại  K .  Khi đó diện tích tứ giác  O H M K  bằng (ảnh 1)

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R)\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HA = HB = \frac{{AB}}{2} = \frac{{16}}{2} = 8{\rm{\;(cm)}}{\rm{.}}\]

Chứng minh tương tự, ta được \[KC = KD = \frac{{CD}}{2} = \frac{{12}}{2} = 6{\rm{\;(cm)}}{\rm{.}}\]

Ta có \[KC = KM + MC.\] Suy ra \[KM = KC - MC = 6 - 2 = 4{\rm{\;(cm)}}{\rm{.}}\]

Tứ giác \[OHMK\] có: \[\widehat {OKM} = \widehat {KMH} = \widehat {OHM} = 90^\circ \] nên tứ giác \[OHMK\] là hình chữ nhật.

Do đó \[OH = KM = 4{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được:

\[O{B^2} = O{H^2} + H{B^2} = {4^2} + {8^2} = 80\]. Suy ra \[R = OB = 4\sqrt 5 {\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OKD\] vuông tại \[K,\] ta được: \[O{D^2} = O{K^2} + K{D^2}.\]

Suy ra \[O{K^2} = O{D^2} - K{D^2} = {R^2} - K{D^2} = {\left( {4\sqrt 5 } \right)^2} - {6^2} = 44\]

Do đó \[OK = 2\sqrt {11} {\rm{\;(cm)}}{\rm{.}}\]

Vậy diện tích hình chữ nhật \[OHMK\] là: \[S = KM \cdot OK = 4 \cdot 2\sqrt {11} = 8\sqrt {11} {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng

Xem đáp án » 12/11/2024 368

Câu 2:

Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là

Xem đáp án » 12/11/2024 275

Câu 3:

Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là

Xem đáp án » 12/11/2024 213

Câu 4:

Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là

Xem đáp án » 12/11/2024 178

Câu 5:

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[K\] bất kì. Biết rằng \[OK = 7{\rm{\;cm}}.\] Khẳng định nào sau đây đúng?

Xem đáp án » 12/11/2024 161

Câu 6:

Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là

Xem đáp án » 12/11/2024 151

Câu 7:

Cho hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O';r} \right)\] với \[R > r\] cắt nhau tại hai điểm phân biệt và \[OO' = d.\] Chọn khẳng định đúng?

Xem đáp án » 12/11/2024 138
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua