Câu hỏi:

13/11/2024 359

II. Thông hiểu

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;3,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho  a  và  b  là hai đường thẳng song song và cách nhau một khoảng bằng  3 c m .  Lấy điểm  I  trên  a  và vẽ đường tròn  ( I ; 3 , 5 c m ) .  Khi đó đường tròn  ( I )  với đường thẳng  b (ảnh 1)

Kẻ \[IH \bot b\] tại \[H.\]

Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 3{\rm{\;(cm)}}{\rm{.}}\]

Do \[IH = 3{\rm{\;cm}} < R = 3,5{\rm{\;cm}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] cắt nhau.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Hai tiếp tuyến tại  B  và  C  của đường tròn  ( O ; R )  cắt nhau tại  A .  Khẳng định nào sau đây là sai? (ảnh 1)

Gọi \[H\] là giao điểm của \[BC\] và \[OA.\]

Xét đường tròn \[\left( O \right)\] có hai tiếp tuyến tại \[B\] và \[C\] cắt nhau tại \[A\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[AB = AC.\] Do đó điểm \[A\] nằm trên đường trung trực của đoạn \[BC\] (1)

Đường tròn \[\left( O \right)\] có \[OB = OC = R\] nên điểm \[O\] nằm trên đường trung trực của đoạn \[BC\] (2)

Từ (1), (2), ta thu được \[OA\] là đường trung trực của đoạn \[BC.\]

Suy ra \[OA \bot BC\] tại \[H\] là trung điểm của \[BC.\]

Do đó ta chưa kết luận được \[H\] có là trung điểm của \[OA\] hay không.

Vì vậy phương án A, B, C đúng và phương án D sai.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: D

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển  10 m .  Biết bán kính Trái Đất là khoảng  6 400 k m .  Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng (ảnh 1)

Đổi: \[10{\rm{\;m}} = 0,01{\rm{\;km}}.\]

Gọi \[O\] là tâm Trái Đất và \[R\] là bán kính Trái Đất. Suy ra \[R = 6400{\rm{\;km}}.\]

Ta có điểm \[B\] biểu diễn vị trí con tàu và điểm \[A\] biểu diễn vị trí của thủy thủ.

Suy ra \[h = AB = 10{\rm{\;(m)}}{\rm{.}}\]

Lại có điểm \[A\] biểu diễn vị trí của thủy thủ và điểm \[C\] biểu diễn điểm xa nhất mà thủy thủ nhìn thấy. Khi đó độ dài đoạn \[AC\] gọi là tầm nhìn xa tối đa từ điểm \[A.\]

Vì \[AC\] là tiếp tuyến của đường tròn \[\left( {O;R} \right)\] tại \[C\] nên \[AC \bot OC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[AOC\] vuông tại \[C,\] ta được: \[O{A^2} = A{C^2} + O{C^2}.\]

Suy ra \[A{C^2} = O{A^2} - O{C^2} = {\left( {OB + AB} \right)^2} - O{C^2}\]

\[A{C^2} = {\left( {R + h} \right)^2} - {R^2} = {\left( {6\,\,400 + 0,01} \right)^2} - 6\,\,{400^2} = 128,0001.\]

Khi đó \[AC \approx 11,314{\rm{\;(km)}}{\rm{.}}\]

Do đó tầm nhìn xa tối đa của thủy thủ đó bằng khoảng \[11,314{\rm{\;km}}.\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP