Câu hỏi:

13/11/2024 323

Cho tam giác \[ABC\] đều có ba đỉnh nằm trên đường tròn \[\left( O \right).\] Độ dài các cung \[AB,BC,CA\] đều bằng \[6\pi {\rm{\;cm}}.\] Diện tích của đường tròn \[\left( O \right)\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác  A B C  đều có ba đỉnh nằm trên đường tròn  ( O ) .  Độ dài các cung  A B , B C , C A  đều bằng  6 π c m .  Diện tích của đường tròn  ( O )  là (ảnh 1)

Chu vi đường tròn \(\left( O \right)\) hay chính là độ dài đường tròn \[\left( O \right),\] và bằng \[6\pi + 6\pi + 6\pi = 18\pi .\]

Suy ra \[2\pi R = 18\pi \] hay \[R = 9{\rm{\;(cm)}}{\rm{.}}\]

Diện tích của đường tròn \[\left( O \right)\] là: \[S = \pi {R^2} = \pi \cdot {9^2} = 27\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]

Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Vậy ta chọn phương án B.

Câu 2

Lời giải

Đáp án đúng là: C

Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]

Vậy ta chọn phương án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP