Câu hỏi:

13/11/2024 49

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài \[55{\rm{\;cm}}\] và cung có số đo \[95^\circ \] (hình vẽ).

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài  55 c m  và cung có số đo  95 ∘  (hình vẽ)..Diện tích hình viên phân đó (làm tròn kết quả đến hàng phầ (ảnh 1)

Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm)

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài  55 c m  và cung có số đo  95 ∘  (hình vẽ)..Diện tích hình viên phân đó (làm tròn kết quả đến hàng phầ (ảnh 2)

Kẻ \[OH \bot AB\] tại \[H.\]

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao, suy ra \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HB = \frac{{AB}}{2} = \frac{{55}}{2} = {\rm{27,5\;(cm)}}{\rm{.}}\]

Tam giác \[OAB\] cân tại \[O\] có \[OH\] là đường cao, suy ra \[OH\] cũng là đường phân giác của tam giác.

Do đó \[\widehat {BOH} = \frac{{\widehat {AOB}}}{2} = \frac{{95^\circ }}{2} = 47,5^\circ .\]

Vì tam giác \[OBH\] vuông tại \[H\] nên:

⦁ \[\sin \widehat {BOH} = \frac{{HB}}{{OB}},\] suy ra \[OB = \frac{{HB}}{{\sin \widehat {BOH}}} = \frac{{27,5}}{{\sin 47,5^\circ }}{\rm{\;(cm);}}\]

⦁ \[\tan \widehat {BOH} = \frac{{HB}}{{OH}},\] suy ra \[OH = \frac{{HB}}{{\tan \widehat {BOH}}} = \frac{{27,5}}{{\tan 47,5^\circ }}{\rm{\;(cm)}}{\rm{.}}\]

Diện tích tam giác \[OAB\] là:

\[{S_{\Delta OAB}} = \frac{1}{2} \cdot OH \cdot AB = \frac{1}{2} \cdot \frac{{27,5}}{{\tan 47,5^\circ }} \cdot 55 = \frac{{3025}}{{4 \cdot \tan 47,5^\circ }} \approx 692,98{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Diện tích hình quạt tròn \[AOB\] là:

\[{S_{hqAOB}} = \frac{n}{{360}} \cdot \pi {R^2} = \frac{{95}}{{360}} \cdot \pi \cdot O{B^2} = \frac{{19}}{{72}} \cdot \pi \cdot {\left( {\frac{{27,5}}{{\sin 47,5^\circ }}} \right)^2} \approx 1\,\,153,39{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Khi đó, diện tích hình viên phân cần tìm là:

\[S = {S_{hqAOB}} - {S_{\Delta OAB}} \approx 1\,\,153,39 - 692,98 = 460,41{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng

Xem đáp án » 13/11/2024 131

Câu 2:

Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là \[15{\rm{\;cm}},\,\,18{\rm{\;cm}},\,\,21{\rm{\;cm}},\,\,24{\rm{\;cm}}.\]

Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là  15 c m , 18 c m , 21 c m , 24 c m . (ảnh 1)

Khi đó tổng diện tích hai hình vành khuyên đó bằng

Xem đáp án » 13/11/2024 121

Câu 3:

Cho tam giác \[ABC\] đều có ba đỉnh nằm trên đường tròn \[\left( O \right).\] Độ dài các cung \[AB,BC,CA\] đều bằng \[6\pi {\rm{\;cm}}.\] Diện tích của đường tròn \[\left( O \right)\] là

Xem đáp án » 13/11/2024 93

Câu 4:

Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là

Xem đáp án » 13/11/2024 88

Câu 5:

Tỉ số giữa độ dài cung \[n^\circ \] và chu vi đường tròn (cùng bán kính) luôn bằng

Xem đáp án » 13/11/2024 55

Câu 6:

Cho tam giác \[ABC\] vuông tại \[A,\] cạnh \[AB = 5{\rm{\;cm}},\,\,\widehat {B\,} = 60^\circ .\] Đường tròn tâm \[I,\] đường kính \[AB\] cắt \[BC\] ở \[D.\] Khẳng định nào sau đây là sai?

Xem đáp án » 13/11/2024 51

Câu 7:

Cho đường tròn \[\left( O \right)\] đường kính \[AB = 2\sqrt 2 {\rm{\;cm}}.\] Điểm \[C \in \left( O \right)\] sao cho \[\widehat {ABC} = 30^\circ .\] Diện tích hình quạt \[BAC\] bằng

Xem đáp án » 13/11/2024 48

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store