Cho hình “viên phân” (phần màu xanh) được giới hạn bởi dây cung có độ dài \[55{\rm{\;cm}}\] và cung có số đo \[95^\circ \] (hình vẽ).
Diện tích hình viên phân đó (làm tròn kết quả đến hàng phần trăm) là
A. \[680,65{\rm{\;c}}{{\rm{m}}^2}.\]
B. \[460,41{\rm{\;c}}{{\rm{m}}^2}.\]
C. \[692,98{\rm{\;c}}{{\rm{m}}^2}.\]
D. \[1153,39{\rm{\;c}}{{\rm{m}}^2}.\]
Quảng cáo
Trả lời:

Đáp án đúng là: B
Kẻ \[OH \bot AB\] tại \[H.\]
Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao, suy ra \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]
Vì vậy \[HB = \frac{{AB}}{2} = \frac{{55}}{2} = {\rm{27,5\;(cm)}}{\rm{.}}\]
Tam giác \[OAB\] cân tại \[O\] có \[OH\] là đường cao, suy ra \[OH\] cũng là đường phân giác của tam giác.
Do đó \[\widehat {BOH} = \frac{{\widehat {AOB}}}{2} = \frac{{95^\circ }}{2} = 47,5^\circ .\]
Vì tam giác \[OBH\] vuông tại \[H\] nên:
⦁ \[\sin \widehat {BOH} = \frac{{HB}}{{OB}},\] suy ra \[OB = \frac{{HB}}{{\sin \widehat {BOH}}} = \frac{{27,5}}{{\sin 47,5^\circ }}{\rm{\;(cm);}}\]
⦁ \[\tan \widehat {BOH} = \frac{{HB}}{{OH}},\] suy ra \[OH = \frac{{HB}}{{\tan \widehat {BOH}}} = \frac{{27,5}}{{\tan 47,5^\circ }}{\rm{\;(cm)}}{\rm{.}}\]
Diện tích tam giác \[OAB\] là:
\[{S_{\Delta OAB}} = \frac{1}{2} \cdot OH \cdot AB = \frac{1}{2} \cdot \frac{{27,5}}{{\tan 47,5^\circ }} \cdot 55 = \frac{{3025}}{{4 \cdot \tan 47,5^\circ }} \approx 692,98{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Diện tích hình quạt tròn \[AOB\] là:
\[{S_{hqAOB}} = \frac{n}{{360}} \cdot \pi {R^2} = \frac{{95}}{{360}} \cdot \pi \cdot O{B^2} = \frac{{19}}{{72}} \cdot \pi \cdot {\left( {\frac{{27,5}}{{\sin 47,5^\circ }}} \right)^2} \approx 1\,\,153,39{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Khi đó, diện tích hình viên phân cần tìm là:
\[S = {S_{hqAOB}} - {S_{\Delta OAB}} \approx 1\,\,153,39 - 692,98 = 460,41{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Vậy ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\pi {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[\frac{7}{2}\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: B
Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]
Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Vậy ta chọn phương án B.
Câu 2
A. \[{S_v} = \pi {R^2} - {r^2}.\]
B. \[{S_v} = \pi {\left( {R - r} \right)^2}.\]
C. \[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]
D. \[{S_v} = \pi \left( {{r^2} - {R^2}} \right).\]
Lời giải
Đáp án đúng là: C
Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]
Vậy ta chọn phương án C.
Câu 3
A. \[234\pi {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[99\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[135\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[216\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\frac{{4\pi }}{3}{\rm{\;dm}}.\]
B. \[\frac{{2\pi }}{3}{\rm{\;dm}}.\]
C. \[\frac{\pi }{3}{\rm{\;dm}}.\]
D. \[\frac{\pi }{6}{\rm{\;dm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[488,69{\rm{\;m}}{\rm{.}}\]
B. \[69,81{\rm{\;m}}.\]
C. \[13,96{\rm{\;m}}.\]
D. \[6,98{\rm{\;m}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[32\pi {\rm{\;c}}{{\rm{m}}^2}.\]
B. \[18\pi {\rm{\;c}}{{\rm{m}}^2}.\]
C. \[9\pi {\rm{\;c}}{{\rm{m}}^2}.\]
D. \[27\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.