Câu hỏi:

13/11/2024 1,650 Lưu

Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]

Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]

Vậy ta chọn phương án C.

Lời giải

Đáp án đúng là: A

Diện tích hình vành khuyên màu trắng tạo bởi hai đường tròn đồng tâm có bán kính bằng \[15{\rm{\;cm}},\,\,18{\rm{\;cm}}\] là:

\[{S_1} = \pi \left( {{{18}^2} - {{15}^2}} \right) = 99\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Diện tích hình vành khuyên màu trắng tạo bởi hai đường tròn đồng tâm có bán kính bằng \[21{\rm{\;cm}},\,\,24{\rm{\;cm}}\] là:

\[{S_2} = \pi \left( {{{24}^2} - {{21}^2}} \right) = 135\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Tổng diện tích hai hình vành khuyên đó là:

\[S = {S_1} + {S_2} = 99\pi + 135\pi = 234\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó tổng diện tích hai hình vành khuyên đó bằng \[234\pi {\rm{\;c}}{{\rm{m}}^2}{\rm{.}}\]

Vậy ta chọn phương án A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP