Cho hai đường tròn \[\left( {O;R} \right),\,\,\left( {O';R'} \right)\] cắt nhau tại \[A,\,\,B,\] trong đó \[O' \in \left( O \right).\] Kẻ đường kính \[O'C\] của \[\left( O \right).\] Khẳng định nào sau đây là đúng nhất?
A. \[\widehat {CBO'} = 90^\circ .\]
B. \[AC = CB.\]
C. \[CA,CB\] là hai tiếp tuyến của \[\left( {O'} \right).\]
D. Cả A, B, C đều đúng.
Quảng cáo
Trả lời:

Đáp án đúng là: D
Đường tròn \[\left( O \right)\] có \[O'C\] là đường kính nên \[O\] là trung điểm \[O'C.\] Do đó \[OO' = OC.\]
Tam giác \[O'BC\] có \[BO\] là đường trung tuyến ứng với cạnh \(O'C\) và \[OB = \frac{{O'C}}{2}\] nên tam giác \[O'BC\] vuông tại \[B\] hay \[\widehat {CBO'} = 90^\circ .\]
Khi đó \[BC \bot O'B\] tại \[B\] thuộc đường tròn \(\left( {O'} \right)\). Vì vậy \[CB\] là tiếp tuyến của \[\left( {O'} \right).\]
Chứng minh tương tự, ta được \[CA\] là tiếp tuyến của \[\left( {O'} \right).\]
Đường tròn \[\left( {O'} \right)\] có \[CA,CB\] là hai tiếp tuyến cắt nhau tại \[C.\]
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[CA = CB.\]
Như vậy cả A, B, C đều là khẳng định đúng.
Vậy ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[\widehat {AOD} = 3\widehat {ACD}.\]
B.
C.
D. \[\widehat {ACD} = 30^\circ .\]
Lời giải
Đáp án đúng là: B
⦁ Xét \[\Delta OAB\] có \[OA = OB = AB = R\] nên \[\Delta OAB\] là tam giác đều.
Khi đó \[\widehat {AOB} = \widehat {OAB} = 60^\circ .\]
Theo bài, điểm \[C\] nằm trên tia đối của tia \[BA\] sao cho \[BC = BA\] nên \[B\] là trung điểm \[AC.\]
Tam giác \[OAC\] có \[OB\] là đường trung tuyến ứng với \(AC\) và \[R = OB = BA = BC = \frac{{AC}}{2}\] nên tam giác \[OAC\] vuông tại \[O.\]
Do đó \[\widehat {AOC} = 90^\circ \] (1)
Vì vậy Do đó phương án C là kết luận đúng.
⦁ Tam giác \[OAC\] vuông tại \[O,\] có: \[\widehat {OAC} + \widehat {OCA} = 90^\circ .\]
Suy ra \[\widehat {OCA} = 90^\circ - \widehat {OAC} = 90^\circ - 60^\circ = 30^\circ \] (2)
Do đó phương án D là kết luận đúng.
⦁ Từ (1), (2), ta thu được \[\widehat {AOD} = 3\widehat {ACD}.\] Do đó phương án A là kết luận đúng.
⦁ Từ (1), ta suy ra \[OA \bot OE\] hay \[\widehat {AOE} = 90^\circ .\]
Ta có
Do đó phương án B là kết luận sai.
Vậy ta chọn phương án B.
Câu 2
A. \[\frac{{25\pi }}{2}{\rm{\;d}}{{\rm{m}}^2}.\]
B. \[\frac{{25\pi }}{{48}}{\rm{\;d}}{{\rm{m}}^2}.\]
C. \[\frac{{25\pi }}{4}{\rm{\;d}}{{\rm{m}}^2}.\]
D. \[\frac{{25\pi }}{{12}}{\rm{\;d}}{{\rm{m}}^2}.\]
Lời giải
Đáp án đúng là: A
Vì mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ \] nên mỗi hình quạt tròn đó ứng với cung \[7,5^\circ .\]
Diện tích mỗi hình quạt tròn là: \[{S_q} = \frac{n}{{360}}\pi {R^2} = \frac{{7,5}}{{360}} \cdot \pi \cdot {5^2} = \frac{{25\pi }}{{48}}{\rm{\;(d}}{{\rm{m}}^2}).\]
Vì \[\frac{{360}}{{7,5}} = 48\] và các hình quạt tròn được tô màu và không được tô màu được sắp xếp xen kẽ nhau nên số hình quạt tròn được tô màu là: \[48:2 = 24\] (hình quạt tròn).
Diện tích tất cả các hình quạt tròn được tô màu là: \[S = 24{S_q} = 24 \cdot \frac{{25\pi }}{{48}} = \frac{{25\pi }}{2}{\rm{\;(d}}{{\rm{m}}^2}).\]
Vậy ta chọn phương án A.
Câu 3
A. Chỉ (i) đúng.
B. Chỉ (ii) đúng.
C. Cả (i), (ii) đều đúng.
D. Cả (i), (ii) đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Tam giác cân.
B. Tam giác vuông.
C. Tam giác vuông cân.
D. Tam giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(OA \bot BC\).
B. \(OA\) là đường trung trực của \(BC\).
C. \(AB = AC\).
D. \(OA \bot BC\) tại trung điểm của \(AO\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[8,5{\rm{\;cm}}.\]
B. \[17{\rm{\;cm}}.\]
C. \[12,7{\rm{\;cm}}.\]
D. \[6,3{\rm{\;cm}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.