Câu hỏi:
14/11/2024 238Cho nửa đường tròn tâm \[O\], đường kính \[AB = 2R\]. Trên tia đối của tia \[AB\] lấy điểm \[E\] (khác với điểm \[A\]). Tiếp tuyến kẻ từ điểm \[E\] cắt các tiếp tuyến kẻ từ điểm \[A\] và \[B\] của nửa đường tròn \[\left( O \right)\] lần lượt tại \[C\] và \[D\]. Gọi \[M\] là tiếp điểm của tiếp tuyến kẻ từ điểm \[E\]. Trong các khẳng định sau, khẳng định nào là sai?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì \[AC\] là tiếp tuyến của \[\left( O \right)\] nên \(OA \bot AC\) hay \(\widehat {OAC} = 90^\circ \).
Vì \[MC\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MC\) hay \(\widehat {OMC} = 90^\circ \).
Suy ra \(\widehat {OAC} + \widehat {OMC} = 180^\circ \). Do đó \[OACM\] là tứ giác nội tiếp.
Vì \[BD\] là tiếp tuyến của \[\left( O \right)\] nên \(OB \bot BD\) hay \(\widehat {OBD} = 90^\circ \)
Vì \[MD\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MD\) hay \(\widehat {OMD} = 90^\circ \)
Suy ra \(\widehat {OBD} + \widehat {OMD} = 180^\circ \). Do đó \[OMDB\] là tứ giác nội tiếp.
Vậy đáp án D sai.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có
\[BD\] và \[CE\] là đường cao của tam giác \[ABC\] nên \(\widehat {BDC} = \widehat {BEC} = 90^\circ \).
Suy ra tam giác \(BDC\) vuông tại \[D\] và tam giác \(BEC\)vuông tại \(E\).
Suy ra 4 điểm \(B,D,C,E\) cùng nằm trên đường tròn đường kính BC.
Suy ra \(BEDC\) là tứ giác nội tiếp.
Điểm \(D\) nằm trên \(AC\) nên \(ADCB\) không phải là hình tứ giác.
Xét tứ giác \(AHBC\) có:
\(\widehat {HAC} = \widehat {HAD} < 90^\circ \) (do tam giác \(HAD\) vuông tại D)
\(\widehat {HBC} = \widehat {DBC} < 90^\circ \) (do tam giác \(BDC\) vuông tại D)
Suy ra \(\widehat {HAC} + \widehat {HBC} < 180^\circ \).
Vậy tứ giác \(AHBC\) không là tứ giác nội tiếp.
Lời giải
Đáp án đúng là: A
Xét tứ giác \[AEHF\] có: \(\widehat A = \widehat E = \widehat F = 90^\circ \)
Suy ra tứ giác \[AEHF\] là hình chứ nhật.
Suy ra tứ giác \[AEHF\] là tứ giác nội tiếp (có tổng hai góc đối diện bằng \(180^\circ \)).
Do đó \(\widehat {AFE} = \widehat {AHE}\) (hai góc nội tiếp cùng chắn cung \[AE\])
Mà \(\widehat {AHE} = \widehat {ABH}\) (cùng phụ góc \[BHE\])
Suy ra \(\widehat {AFE} = \widehat {ABC}\).
Xét tứ giác \[BEFC\] có: \(\widehat {AFE} = \widehat {ABC}\)
Góc \[AFE\] là góc ngoài tại đỉnh \[F\].
Suy ra \[BEFC\] là tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.