Câu hỏi:

14/11/2024 40

Cho tứ giác \[ABCD\] có số đo các góc \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\] tương ứng. Trường hợp nào sau đây thì tứ giác \[ABCD\] có thể là tứ giác nội tiếp?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét đáp án A, ta thấy:

\(\widehat A + \widehat C = 50^\circ + 130^\circ = 180^\circ \)

\(\widehat B + \widehat D = 60^\circ + 140^\circ = 200^\circ \)

Vậy tứ giác \[ABCD\] trong đáp án A không là tứ giác nội tiếp

Xét đáp án B, ta thấy:

\(\widehat A + \widehat C = 65^\circ + 115^\circ = 180^\circ \)

\(\widehat B + \widehat D = 85^\circ + 95^\circ = 180^\circ \)

Vậy tứ giác \[ABCD\] trong đáp án B là tứ giác nội tiếp.

Xét đáp án C, ta thấy:

\(\widehat A + \widehat C = 82^\circ + 98^\circ = 180^\circ \)

\(\widehat B + \widehat D = 90^\circ + 100^\circ = 200^\circ \)

Vậy tứ giác \[ABCD\] trong đáp án C không là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:

Xem đáp án » 14/11/2024 202

Câu 2:

Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác

Xem đáp án » 14/11/2024 96

Câu 3:

Cho nửa đường tròn \[\left( {O;{\rm{ }}R} \right)\] đường kính \[BC\]. Lấy điểm \[A\] trên tia đối của tia \[CB\]. Kẻ tiếp tuyến \[AF,{\rm{ }}Bx\] của nửa kia đường tròn \[\left( O \right)\] (với \[F\] là tiếp điểm). Tia \[AF\] cắt tia \[Bx\] của nửa đường tròn tại \[D\]. Khi đó tứ giác \[OBDF\] là

Xem đáp án » 14/11/2024 86

Câu 4:

Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:

Xem đáp án » 14/11/2024 77

Câu 5:

II. Thông hiểu

Cho đường tròn \[\left( O \right)\] có \[AB\] là đường kính. Trên tia đối của tia \[AB\] lấy điểm \[C\] nằm ngoài đường tròn. Lấy điểm \[M\] bất kì nằm trên đường tròn \[\left( O \right)\]. Gọi \[P\] là giao điểm của \[MB\] và đường vuông góc với \[AB\] tại \[C\]. Chọn khẳng định đúng.

Xem đáp án » 14/11/2024 73

Câu 6:

Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là

Xem đáp án » 14/11/2024 63

Câu 7:

III. Vận dụng

Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng

Xem đáp án » 14/11/2024 58

Bình luận


Bình luận