Câu hỏi:

14/11/2024 222 Lưu

 

Cho phương trình \(2{x^2} + 2\sqrt {11} x + 3 = 0.\) Khẳng định nào sau đây là đúng

A. Phương trình có hai nghiệm phân biệt.

B. Phương trình vô nghiệm.

C. Phương trình có nghiệm kép.

D. Phương trình có vô số nghiệm

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(\Delta ' = {\left( {\sqrt {11} } \right)^2} - 2.3 = 5 > 0\) .

Vậy phương trình có hai nghiệm phân biệt.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có \(\Delta ' = {\left( {2m} \right)^2} - \left( {4{m^2} - 2} \right) = 2 > 0\) với mọi \(m.\)

Do đó, phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\).

Khi đó, theo định lý Viète: \({x_1} + {x_2} = 4m\)

\(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\)

\( = \left( {x_1^2 - 4m{x_1} + 4{m^2} - 2} \right) + 4m\left( {{x_1} + {x_2}} \right) - 16{m^2} - 4\)

\( = 0 + 4m \cdot 4m - 16{m^2} - 4 = - 4.\)

Vậy \(P = - 4.\)

Câu 2

A. \(m = - \sqrt 5 .\)

B. \(m = \sqrt 5 .\)

C. \[m = \sqrt 3 .\] và \(m = \sqrt 3 .\)

D. \(m = \sqrt 5 \) và \[m = - \sqrt 5 \] .

Lời giải

Đáp án đúng là: D

Điều kiện để phương trình có hai nghiệm \({x_1},\,{x_2}\) là \(\Delta ' \ge 0\) hay \({m^2} - 4 \ge 0\)

Khi đó \({m^2} \ge 4\) nên \(\left| m \right| \ge 2\,\,\,\left( 1 \right).\)

Ta có \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\)

\(x_1^2 + x_2^2 = 3{x_1}{x_2}\)

\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3{x_1}{x_2}\)

\({\left( {{x_1} + {x_2}} \right)^2} = 5{x_1}{x_2}\,\,\,\left( 2 \right)\)

Theo định lí Viète ta có \({x_1} + {x_2} = - 2m,\,\,{x_1}{x_2} = 4.\)

Khi đó \(\left( 2 \right)\) trở thành \(4{m^2} = 20\) hay \(m = \pm \sqrt 5 \) (thỏa mãn \(\left( 1 \right)\)).

Vậy \(m = \pm \sqrt 5 \) là giá trị cần tìm.

Câu 3

A. \(m > 0.\)

B. \(m < 0.\)

</>

C. \(m = 0.\)

D. \(m \ne 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = - 16.\)

B. \(y = 4.\)

C. \(y = 16.\)

D. \(y = - 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
B. \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right..\)
C. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = \frac{a}{c}\end{array} \right..\)
D. \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{b}{a}\\{x_1}{x_2} = - \frac{c}{a}\end{array} \right..\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP