Câu hỏi:
14/11/2024 211
Nếu hai số \(x;\,y\) có \(x + y = S\) và \(xy = P\) (điều kiện \({S^2} - 4P \ge 0\)) thì \(x;\,y\) là hai nghiệm của phương trình
Quảng cáo
Trả lời:
Đáp án đúng là: B
Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình bậc hai
\({x^2} - Sx + P = 0.\)
Điều kiện để có hai số đó là \({S^2} - 4P \ge 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có \(\Delta ' = {\left( {2m} \right)^2} - \left( {4{m^2} - 2} \right) = 2 > 0\) với mọi \(m.\)
Do đó, phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\).
Khi đó, theo định lý Viète: \({x_1} + {x_2} = 4m\)
\(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\)
\( = \left( {x_1^2 - 4m{x_1} + 4{m^2} - 2} \right) + 4m\left( {{x_1} + {x_2}} \right) - 16{m^2} - 4\)
\( = 0 + 4m \cdot 4m - 16{m^2} - 4 = - 4.\)
Vậy \(P = - 4.\)
Lời giải
Đáp án đúng là: D
Điều kiện để phương trình có hai nghiệm \({x_1},\,{x_2}\) là \(\Delta ' \ge 0\) hay \({m^2} - 4 \ge 0\)
Khi đó \({m^2} \ge 4\) nên \(\left| m \right| \ge 2\,\,\,\left( 1 \right).\)
Ta có \(\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = 3\)
\(x_1^2 + x_2^2 = 3{x_1}{x_2}\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3{x_1}{x_2}\)
\({\left( {{x_1} + {x_2}} \right)^2} = 5{x_1}{x_2}\,\,\,\left( 2 \right)\)
Theo định lí Viète ta có \({x_1} + {x_2} = - 2m,\,\,{x_1}{x_2} = 4.\)
Khi đó \(\left( 2 \right)\) trở thành \(4{m^2} = 20\) hay \(m = \pm \sqrt 5 \) (thỏa mãn \(\left( 1 \right)\)).
Vậy \(m = \pm \sqrt 5 \) là giá trị cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.