Câu hỏi:

16/11/2024 31

III. Vận dụng

Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho lục giác đều  A B C D E F  tâm  O .  Gọi  M , N  lần lượt là trung điểm của  E F , B D .  Khẳng định nào sau đây là sai? (ảnh 1)

Xét phương án A:

Tổng 6 góc của lục giác đều \[ABCDEF\]bằng tổng các góc trong hai tứ giác \[ABCD\] và \[AFED.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ \] hay \[\widehat {AFM} = \widehat {BCD} = 120^\circ .\]

Vì \[CB = CD\] (chứng minh trên) nên tam giác \[BCD\] cân tại \[C.\]

Do đó \[CO\] vừa là đường trung tuyến, vừa là đường phân giác của tam giác \[BCD\].

Vì vậy \[\widehat {OCB} = \frac{{\widehat {BCD}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OC\] (vì \[O\] là tâm của lục giác đều \[ABCDEF\]).

Suy ra tam giác \[OBC\] cân tại \[O\].

Mà \[\widehat {OCB} = 60^\circ \] (chứng minh trên). Do đó tam giác \[OBC\] đều.

Chứng minh tương tự cho các tam giác \[OCD,{\rm{ }}OAB,{\rm{ }}OAF,\,\,ODE,\,\,OEF,\] ta được \[\Delta OCD,{\rm{ }}\Delta OAB,\] \[\Delta OAF,{\rm{ }}\Delta ODE,\,\,\Delta OEF\] là các tam giác đều.

Ta có tam giác \[OBC\] đều nên \[OB = BC = OC,\] mà \[OB = OC = OD\] và \[BC = CD\] nên \[OB = BC = CD = OD.\] Suy ra tứ giác \[OBCD\] là hình thoi.

Do đó hai đường chéo \[OC\] và \[BD\] vuông góc với nhau tại trung điểm \[N\] của mỗi đường.

Vậy N là trung điểm \[OC.\]

Xét phương án B:

Ta có \[\widehat {AOB} = \widehat {BOC} = 60^\circ \] (vì các tam giác \[OAB,{\rm{ }}OBC\] đều).

Suy ra \[\widehat {AOC} = \widehat {AOB} + \widehat {BOC} = 60^\circ + 60^\circ = 120^\circ .\]

Ta có \[EF = OC\] (cùng bằng OF) và \[M,{\rm{ }}N\] lần lượt là trung điểm \[EF,{\rm{ }}OC\] nên \[FM = ON.\]

Xét \[\Delta AFM\] và \[\Delta AON\] có:

\[\widehat {AFM} = \widehat {AON} = 120^\circ \,;\]

\[AF = AO\] (tam giác \[OAF\] đều);

\[FM = ON\] (chứng minh trên).

Do đó \[\Delta AFM = \Delta AON{\rm{ }}\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right){\rm{.}}\]

Xét phương án C:

Từ kết quả câu b), ta được \[AM = AN\] và \[\widehat {FAM} = \widehat {OAN}\,.\]

Suy ra \[\Delta AMN\] cân tại \[A.\]

Ta có \[\widehat {FAO} = 60^\circ \] (do \[\Delta OAF\] đều).

Suy ra \[\widehat {FAM} + \widehat {MAO} = 60^\circ \] nên \[\widehat {OAN} + \widehat {MAO} = 60^\circ \] hay \[\widehat {MAN} = 60^\circ .\]

Xét \[\Delta AMN\] cân tại \[A\] có \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] đều.

Do đó phương án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?

Xem đáp án » 16/11/2024 17

Câu 2:

Đa giác đều là một đa giác

Xem đáp án » 16/11/2024 15

Câu 3:

Với một phép quay góc \(\alpha \) thì \(\alpha \) có thể nhận các giá trị:

Xem đáp án » 16/11/2024 15

Câu 4:

I. Nhận biết

Cho các hình dưới đây:

Cho các hình dưới đây:Trong các hình trên, hình nào có dạng là đa giác đều? (ảnh 1)

Trong các hình trên, hình nào có dạng là đa giác đều?

Xem đáp án » 16/11/2024 14

Câu 5:

Các phép quay có thể có với một đa giác đều tâm \[O\] là

Xem đáp án » 16/11/2024 14

Câu 6:

I. Thông hiểu

Mỗi góc của bát giác đều nội tiếp đường tròn tâm \[O\] có số đo là

Xem đáp án » 16/11/2024 13

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store