Câu hỏi:

16/11/2024 310 Lưu

Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?

A. \[G.\]

B. \[A.\]

C. \[E.\]

D. \[H.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho bát giác đều  A B C D E F G H  có tâm  O .  Phép quay thuận chiều  135 ∘  tâm  O  biến điểm  D  của bát giác đều  A B C D E F G H  thành điểm nào? (ảnh 1)

Giả sử \[ABCDEGHK\] là bát giác đều có tâm \[O.\]

Do đó \[AB = BC = CD = DE = EG = GH = HK\] và \[OA = OB = OC = OD = OE = OG = OH = OK.\]

Xét \[\Delta OAB\] và \[\Delta OBC\] có: \[OA = OB,{\rm{ }}OB = OC,{\rm{ }}AB = BC\].

Do đó \[\Delta OAB = \Delta OBC\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].

Tương tự, ta sẽ chứng minh được:

\[\Delta OAB = \Delta OBC = \Delta COD = \Delta DOE = \Delta EOG = \Delta GOH = \Delta HOK = \Delta KOA.\]

Suy ra các góc tương ứng bằng nhau:

\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOH} = \widehat {HOK} = \widehat {KOA}.\)

Ta có: \(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOH} + \widehat {HOK} + \widehat {KOA} = 360^\circ \)

Suy ra \(8\widehat {AOB} = 360^\circ ,\) nên \(\widehat {AOB} = 45^\circ .\)

Do đó, \(\widehat {DOE} = \widehat {EOG} = \widehat {GOH} = 45^\circ .\)

Như vậy, ta sẽ có \[\widehat {DOG} = \widehat {DOE} + \widehat {EOF} + \widehat {FOG} = 45^\circ + 45^\circ + 45^\circ = 135^\circ .\]

Vậy quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm \[G.\]

Do đó ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho hình ngũ giác đều  A B C D E  tâm  O . Phép quay thuận chiều tâm  O  biến điểm  A  thành điểm  E  thì điểm  C  biến thành điểm (ảnh 1)

Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì các điểm \[B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E\] tương ứng biến thành các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\].

Lời giải

Đáp án đúng là: D

Với \[0^\circ \le \alpha < 360^\circ \], các phép quay thuận chiều tâm \[O\] biến hình vuông trên thành chính nó là \(0^\circ \,;\,\,90^\circ \,;\,\,180^\circ \,;\,\,270^\circ .\)

Câu 3

A. Hình \(a,\,\,b\).

B. Hình \(b,\,\,d\).

C. Hình \[c,\,\,e\].

D. Hình \(d,\,\,e\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Phép quay thuận chiều và phép quay đảo chiều.

B. Phép quay thuận chiều và phép quay ngược chiều.

C. Phép quay xuôi chiều và phép quay đảo chiều.

D. Phép quay xuôi chiều và phép quay ngược chiều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[N\] là trung điểm \[OC.\]

B. \[\Delta AFM = \Delta AON.\]

C. Tam giác \[AMN\] đều.

D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP