15 câu trắc nghiệm Toán 9 Chân trời sáng tạo Bài 3. Đa giác đều và phép quay có đáp án
83 người thi tuần này 4.6 321 lượt thi 15 câu hỏi 60 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Các hình \(a,\,\,c,\,\,e\) không là đa giác đều vì các hình này không phải đa giác lồi.
Hình \[b\] là hình vuông (tứ giác đều), hình \[d\] là lục giác đều.
Lời giải
Đáp án đúng là: C
Đa giác đều là một đa giác có các cạnh và các góc bằng nhau.
Lời giải
Đáp án đúng là: B
Các phép quay có thể có với một đa giác đều tâm \[O\] là phép quay thuận chiều tâm \[O\] và phép quay ngược chiều tâm \[O\].
Câu 4
Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều.
Trong các hình trên, có bao nhiêu đa giác giác đều?
Lời giải
Đáp án đúng là: B
Trong các hình trên, các đa giác đều là hình vuông (tứ giác đều) và hình tam giác đều.
Vậy có 2 đa giác đều trong các hình trên.
Lời giải
Đáp án đúng là: C
Với một phép quay góc \(\alpha \) thì \(\alpha \) có thể nhận các giá trị là \(0^\circ \le \alpha \le 360^\circ \).
Lời giải
Đáp án đúng là: D
Số đo mỗi góc của một bát giác đều là:
\(\frac{{180^\circ .\left( {8 - 2} \right)}}{8} = 135^\circ \).
Vậy số đo mỗi góc của một bát giác đều là \(135^\circ \).
Lời giải
Đáp án đúng là: D
Chu vi đa giác đều 11 cạnh đã cho là: \(11.5 = 55{\rm{ }}\left( {{\rm{cm}}} \right)\).
Lời giải
Đáp án đúng là: C
Tổng các góc trong của một ngũ giác đều là:
\(180^\circ \left( {5 - 2} \right) = 540^\circ \).
Câu 9
Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là
Lời giải
Đáp án đúng là: D
Với \[0^\circ \le \alpha < 360^\circ \], các phép quay thuận chiều tâm \[O\] biến hình vuông trên thành chính nó là \(0^\circ \,;\,\,90^\circ \,;\,\,180^\circ \,;\,\,270^\circ .\)
Câu 10
Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là
Lời giải
Đáp án đúng là: C
Với \[0^\circ \le \alpha < 360^\circ \], các phép quay thuận chiều tâm \[O\] biến tam giác trên thành chính nó là \(0^\circ \,;\,\,120^\circ \,;\,\,240^\circ .\)
Câu 11
Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành
Lời giải
Đáp án đúng là: B
Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến điểm \[C\] thành B, biến điểm \[D\] thành \[C\].
Vậy phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành \[BC\].
Câu 12
Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm
Lời giải
Đáp án đúng là: B
Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì các điểm \[B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E\] tương ứng biến thành các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\].
Câu 13
III. Vận dụng
Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?
Lời giải
Đáp án đúng là: D
Xét phương án A:
Tổng 6 góc của lục giác đều \[ABCDEF\]bằng tổng các góc trong hai tứ giác \[ABCD\] và \[AFED.\]
Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]
Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ \] hay \[\widehat {AFM} = \widehat {BCD} = 120^\circ .\]
Vì \[CB = CD\] (chứng minh trên) nên tam giác \[BCD\] cân tại \[C.\]
Do đó \[CO\] vừa là đường trung tuyến, vừa là đường phân giác của tam giác \[BCD\].
Vì vậy \[\widehat {OCB} = \frac{{\widehat {BCD}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]
Ta có \[OB = OC\] (vì \[O\] là tâm của lục giác đều \[ABCDEF\]).
Suy ra tam giác \[OBC\] cân tại \[O\].
Mà \[\widehat {OCB} = 60^\circ \] (chứng minh trên). Do đó tam giác \[OBC\] đều.
Chứng minh tương tự cho các tam giác \[OCD,{\rm{ }}OAB,{\rm{ }}OAF,\,\,ODE,\,\,OEF,\] ta được \[\Delta OCD,{\rm{ }}\Delta OAB,\] \[\Delta OAF,{\rm{ }}\Delta ODE,\,\,\Delta OEF\] là các tam giác đều.
Ta có tam giác \[OBC\] đều nên \[OB = BC = OC,\] mà \[OB = OC = OD\] và \[BC = CD\] nên \[OB = BC = CD = OD.\] Suy ra tứ giác \[OBCD\] là hình thoi.
Do đó hai đường chéo \[OC\] và \[BD\] vuông góc với nhau tại trung điểm \[N\] của mỗi đường.
Vậy N là trung điểm \[OC.\]
Xét phương án B:
Ta có \[\widehat {AOB} = \widehat {BOC} = 60^\circ \] (vì các tam giác \[OAB,{\rm{ }}OBC\] đều).
Suy ra \[\widehat {AOC} = \widehat {AOB} + \widehat {BOC} = 60^\circ + 60^\circ = 120^\circ .\]
Ta có \[EF = OC\] (cùng bằng OF) và \[M,{\rm{ }}N\] lần lượt là trung điểm \[EF,{\rm{ }}OC\] nên \[FM = ON.\]
Xét \[\Delta AFM\] và \[\Delta AON\] có:
\[\widehat {AFM} = \widehat {AON} = 120^\circ \,;\]
\[AF = AO\] (tam giác \[OAF\] đều);
\[FM = ON\] (chứng minh trên).
Do đó \[\Delta AFM = \Delta AON{\rm{ }}\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right){\rm{.}}\]
Xét phương án C:
Từ kết quả câu b), ta được \[AM = AN\] và \[\widehat {FAM} = \widehat {OAN}\,.\]
Suy ra \[\Delta AMN\] cân tại \[A.\]
Ta có \[\widehat {FAO} = 60^\circ \] (do \[\Delta OAF\] đều).
Suy ra \[\widehat {FAM} + \widehat {MAO} = 60^\circ \] nên \[\widehat {OAN} + \widehat {MAO} = 60^\circ \] hay \[\widehat {MAN} = 60^\circ .\]
Xét \[\Delta AMN\] cân tại \[A\] có \[\widehat {MAN} = 60^\circ \] nên \[\Delta AMN\] đều.
Do đó phương án D sai.
Lời giải
Đáp án đúng là: D
Theo công thức tính góc của đa giác đều, ta có:
\(\widehat {ADB} = \frac{{180^\circ \left( {6 - 2} \right)}}{6} = 120^\circ \).
Tam giác \[DBA\] cân tại \[D\] nên \(\widehat {DAB} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Tương tự, ta tính được \(\widehat {DAC} = 36^\circ \).
Vậy \(\widehat {BAC} = \widehat {DAB} + \widehat {DAC} = 30^\circ + 36^\circ = 66^\circ \).
Câu 15
Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?
Lời giải
Đáp án đúng là: A
Giả sử \[ABCDEGHK\] là bát giác đều có tâm \[O.\]
Do đó \[AB = BC = CD = DE = EG = GH = HK\] và \[OA = OB = OC = OD = OE = OG = OH = OK.\]
Xét \[\Delta OAB\] và \[\Delta OBC\] có: \[OA = OB,{\rm{ }}OB = OC,{\rm{ }}AB = BC\].
Do đó \[\Delta OAB = \Delta OBC\,\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].
Tương tự, ta sẽ chứng minh được:
\[\Delta OAB = \Delta OBC = \Delta COD = \Delta DOE = \Delta EOG = \Delta GOH = \Delta HOK = \Delta KOA.\]
Suy ra các góc tương ứng bằng nhau:
\(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOG} = \widehat {GOH} = \widehat {HOK} = \widehat {KOA}.\)
Ta có: \(\widehat {AOB} + \widehat {BOC} + \widehat {COD} + \widehat {DOE} + \widehat {EOG} + \widehat {GOH} + \widehat {HOK} + \widehat {KOA} = 360^\circ \)
Suy ra \(8\widehat {AOB} = 360^\circ ,\) nên \(\widehat {AOB} = 45^\circ .\)
Do đó, \(\widehat {DOE} = \widehat {EOG} = \widehat {GOH} = 45^\circ .\)
Như vậy, ta sẽ có \[\widehat {DOG} = \widehat {DOE} + \widehat {EOF} + \widehat {FOG} = 45^\circ + 45^\circ + 45^\circ = 135^\circ .\]
Vậy quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm \[G.\]
Do đó ta chọn phương án A.
64 Đánh giá
50%
40%
0%
0%
0%