Giải bài toán sau bằng cách lập hệ phương trình.
Hai vòi nước cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút sẽ đầy. Nếu mở vòi thứ nhất chảy trong 10 phút và vòi thứ hai chảy trong 12 phút thì đầy
bể. Hỏi mỗi vòi chảy một mình thì sau bao lâu mới đầy bể?
Hai vòi nước cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút sẽ đầy. Nếu mở vòi thứ nhất chảy trong 10 phút và vòi thứ hai chảy trong 12 phút thì đầy
bể. Hỏi mỗi vòi chảy một mình thì sau bao lâu mới đầy bể?
Quảng cáo
Trả lời:
Gọi
(giờ) là thời gian để vòi thứ nhất chảy một mình đầy bể;
(giờ) là thời gian để vòi thứ hai chảy một mình đầy bể (
).
Đổi: 1 giờ 20 phút =
giờ, 12 phút =
giờ, 10 phút =
giờ.
Theo đề, hai vòi cùng chảy thì sau
giờ sẽ đầy bể.
Do đó, trong một giờ, hai vòi cùng chảy được số phần bể là:
(bể).
Trong 1 giờ, vòi thứ nhất chảy được
(bể), vòi thứ hai chảy được
(bể).
Ta có phương trình: ![]()
Nếu mở vòi thứ nhất chảy trong 10 phút và vòi thứ hai chảy trong 12 phút thì đầy
bể nên ta có phương trình ![]()
Từ
và
ta có hệ phương trình
.
Từ phương trình thứ nhất, ta có:
, thế vào phương trình thứ hai, ta được:

![]()
![]()
![]()
(TMĐK).
Thay
vào hệ phương trình thứ nhất, được
suy ra
(TMĐK).
Vậy vòi thứ nhất chảy một mình đầy bể trong 2 giờ, vòi thứ hai chảy một mình đầy bể trong 4 giờ.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Có:
suy ra
. Do đó,
là hình thang vuông.
Ta có:
(vì
là hình thang vuông tại
và
nên
).
Dấu “=” xảy ra khi và chỉ khi
. Khi đó,
là hình chữ nhật và
là điểm chính giữa cung
suy ra
.
Ta có
nên
là hình chữ nhật, mà
suy ra
là hình vuông.
Tương tự, ta có:
là hình vuông.
Do đó,
.
Vậy
nhỏ nhất khi ![]()
Lời giải
Đáp án: ![]()
Ta có: ![]()
![]()
![]()
![]()
![]()
![]()
hoặc ![]()
hoặc ![]()
Tổng tât cả các nghiệm của phương trình là ![]()
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


