Câu hỏi:

17/12/2024 539

Cho hệ phương trình \(\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\) (m là tham số).

a) Giải hệ phương trình khi m = 2.

b) Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn: 2x + y ≤ 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khi m = 2 thì hệ phương trình là: \(\left\{ \begin{array}{l}x + y = 2\\2x + y = 3\end{array} \right.\).

Từ x + y = 2 ta có x = 2 – y.

Thế x = 2 – y vào phương trình 2x + y = 3 ta được 2(2 – y) + y = 3 hay 4 – y = 3, suy ra y = 1.

Với y = 1 thì x = 1.

Vậy hệ phương trình có cặp nghiệp (1; 1) khi m = 2.

b) Có \(\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\)

Từ phương trình (m – 1)x + y = 2 suy ra y = 2 – (m – 1)x

Thay y = 2 – (m – 1)x vào phương trình mx + y = m + 1, ta được:

mx + 2 – (m – 1)x = m + 1 hay 2 + x = m + 1 suy ra x = m – 1.

Thay x = m – 1 vào y = 2 – (m – 1)x được y = 2 – (m – 1)2.

Vậy hệ phương trình luôn có nghiệm duy nhất (x; y) = (m – 1; 2 – (m – 1)2).

Có 2x + y = 2(m – 1) + 2 – (m – 1)2 = −m2 + 4m – 1 = 3 – (m – 2)2 ≤ 3 với mọi m.

Vậy với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn: 2x + y ≤ 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Với m = 1, hệ phương trình (I) có dạng: \(\left\{ \begin{array}{l}x + 2y = 4\\2x - 3y = 1\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}2x + 4y = 8\\2x - 3y = 1\end{array} \right.\).

Thực hiện trừ theo vế hai phương trình của hê, ta được: 7y = 7 khi y = 1.

Thay y = 1 vào phương trình x + 2y = 4 được x = 2.

Vậy khi m = 1 thì hệ phương trình có nghiệm là (2; 1).

b) Ta có hệ phương trình \(\left\{ \begin{array}{l}x + 2y = m + 3\\2x - 3y = m\end{array} \right.\), suy ra \(\left\{ \begin{array}{l}2x + 4y = 2m + 6\\2x - 3y = m\end{array} \right.\).

Thực hiện trừ theo vế hai phương trình của hệ, ta được:7y = m + 6 suy ra y = \(\frac{{m + 6}}{7}\).

Thay y = \(\frac{{m + 6}}{7}\) vào phương trình x + y = m + 3, ta được: x + \(\frac{{m + 6}}{7}\) = m + 3, suy ra x = \(\frac{{5m + 9}}{7}\).

Lại có, x + y = −3 do đó, \(\frac{{m + 6}}{7}\) + \(\frac{{5m + 9}}{7}\) = −3 hay \(\frac{{6m + 15}}{7}\) = −3.

Suy ra 6m + 15 = −21, do đó m = −6.

Vậy với m = −6 thì hệ phương trình (I) có nghiệm duy nhất (x; y) thỏa mãn

x + y = −3.

Lời giải

Đáp án đúng là: A

Để hệ có nghiệm duy nhất khi \(\frac{2}{m}\) ≠ \(\frac{{ - 1}}{2}\) suy ra m ≠ −4.

Từ phương trình 2x – y = 1 ta có y = 2x – 1.

Thay y = 2x – 1 vào phương trình mx + 2y = 2 suy ra mx + 2(2x – 1) = 2.

Suy ra (m + 4)x = 4 hay x = \(\frac{4}{{m + 4}}\).

Với x = \(\frac{4}{{m + 4}}\) suy ra y = \(\frac{{4 - m}}{{m + 4}}\).

Theo đề, ta có: 2x – 3y = 1

Suy ra \(\frac{8}{{m + 4}}\) − \(\frac{{3\left( {4 - m} \right)}}{{m + 4}}\) = 1 suy ra 8 – 12 + 3m = m + 4 hay 2m = 8 hay m = 4 (thỏa mãn).

Vậy m = 4 thỏa mãn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP