Câu hỏi:

17/12/2024 474

Một ô tô và một xe máy ở hai địa điểm A và B cách nhau 180 km, khởi hành cùng một lúc đi ngược chiều nhau và gặp nhau sau 2 giờ. Biết vận tốc của ô tô lớn hơn vận tốc của xe máy là 10 km/h. Vận tốc của ô tô là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi x, y lần lượt là vận tốc của ô tô và xe máy (x > y > 0, km/h).

Theo đề, hai xe đi ngược chiều và gặp nhau sau 2 giờ nên ta có: 2x + 2y = 180 hay

x + y = 90 (1).

Vận tốc ô tô lớn hơn vận tốc xe máy 10 km/h nên ta có: x – y = 10 (2).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 90\\x - y = 10\end{array} \right.\).

• Giải hệ phương trình \(\left\{ \begin{array}{l}x + y = 90\\x - y = 10\end{array} \right.\).

Cộng theo vế hai phương trình của hệ, ta được 2x = 100 hay x = 50 (thỏa mãn).

Với x = 50 thì y = 40 (thỏa mãn).

Vậy vận tốc của ô tô là 50 km/h.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gội vận tốc ban đầu là x ( x > 3, km/h), thời gian chạy dự định là y (y > 2, h).

Độ dài của quãng đường AB là xy (km).

Nếu ô tô tăng vận tốc 3 km/h thì rút ngắn 2 giờ so với dự định nên ta có phương trình:

(x + 3)(y – 2) = xy (1)

Nếu ô tô giảm vận tốc 3 km/h thì thời gian tăng 3 giờ so với dự định nên ta có phương trình: (x – 3)(y + 3) = xy (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}(x + 3)(y - 2) = xy\\(x - 3)(y + 3) = xy\end{array} \right.\) hay \(\left\{ \begin{array}{l}3y - 2x = 6\\3x - 3y = 9\end{array} \right.\).

• Giải hệ phương trình \(\left\{ \begin{array}{l}3y - 2x = 6\\3x - 3y = 9\end{array} \right.\) .

Cộng theo vế hai phương trình của hệ, ta có: x = 15 (thỏa mãn).

Với x = 15 thì y = 12 (thỏa mãn).

Vậy độ dài quãng đường AB là: 15.12 = 180 (km).

Lời giải

Đáp án đúng là: C

Gọi vận tốc và thời gian người đó đi quãng đường AB lần lượt là x, y (x > 2, y > 1).

Độ dài quãng đường AB là xy (km).

Theo đề, nếu người đó tăng tốc độ 3 km/h thì đến sớm hơn 1 giờ nên ta có phương trình: (x + 3)(y – 1) = xy (1)

Nếu người đó giảm tốc độ 2 km/h thì đến muộn hơn 1 giờ nên ta có phương trình:

(x – 2)(y + 1) = xy (2)

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\left( {x + 3} \right)\left( {y - 1} \right) = xy\\\left( {x - 2} \right)\left( {y + 1} \right) = xy\end{array} \right.\) hay \(\left\{ \begin{array}{l}3y - x = 3\\x - 2y = 2\end{array} \right.\).

• Giải hệ phương trình \(\left\{ \begin{array}{l}3y - x = 3\\x - 2y = 2\end{array} \right.\).

Cộng theo vế hai phương trình của hệ, ta được y = 5 (thỏa mãn).

Khi đó, x = 12 (thỏa mãn).

Do đó, độ dài quãng đường AB là: 5.12 = 60 (km).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay