Câu hỏi:

17/12/2024 19,023

Hai đội công nhân cùng làm một đoạn đường trong 24 ngày thì xong. Mỗi ngày, đội I làm được nhiều gấp rưỡi đội II. Hỏi nếu làm một mình thì mỗi đội làm xong đoạn đường đó trong bao lâu? (Giả sử năng suất của mỗi đội là không đổi).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x, y lần lượt là số ngày để đổi I và đội II hoàn thành công việc nếu làm riêng một mình (x, y > 0).

Mỗi ngày đội I làm được \(\frac{1}{x}\) (công việc) và đội II làm được \(\frac{1}{y}\) (công việc).

Mỗi ngày đội I làm được nhiều gấp rưỡi đội II nên ta có phương trình \(\frac{1}{x}\) = 1,5.\(\frac{1}{y}\) hay

\(\frac{1}{x}\) = \(\frac{3}{2}.\frac{1}{y}\) (1).

Hai đội làm chung trong 24 ngày thì xong công việc nên mỗi ngày, hai đội làm chung được \(\frac{1}{{24}}\) (công việc). Ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\) (2).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{3}{2}.\frac{1}{y}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\end{array} \right.\)

Đặt u = \(\frac{1}{x}\) và v = \(\frac{1}{y}\) thì ta có hệ phương trình bậc nhất hai ẩn mới là u và v như sau:

\(\left\{ \begin{array}{l}u = \frac{3}{2}v\\u + v = \frac{1}{{24}}\end{array} \right.\)

Thế u = \(\frac{3}{2}\)v vào phương trình u + v = \(\frac{1}{{24}}\) được \(\frac{3}{2}\)v + v = \(\frac{1}{{24}}\) hay \(\frac{5}{2}\)v = \(\frac{1}{{24}}\) suy ra

v = \(\frac{1}{{60}}\).

Do đó, u = \(\frac{3}{2}\)v = \(\frac{3}{2}\).\(\frac{1}{{60}}\) = \(\frac{1}{{40}}\).

Từ đó, ta có: u = \(\frac{1}{x}\) = \(\frac{1}{{40}}\) suy ra u = 40; v = \(\frac{1}{y}\) = \(\frac{1}{{60}}\) suy ra y = 60.

Các giá trị tìm được của x và y đều thỏa mãn điều kiện.

Vậy nếu làm một mình thì đội I làm xong đoạn đường đó trong 40 ngày, còn đội II làm xong trong 60 ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Đổi 1 giờ 30 phút = 90 phút.

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể là x, y (x, y > 90, phút).

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai làm được \(\frac{1}{y}\) bể.

Nếu hai vòi nước cùng chảy vào một bể không có nước thì bể sẽ đầy 90 phút nên ta có phương trình: \(90.\frac{1}{x} + 90.\frac{1}{y} = 1\) hay \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\) (1).

Nếu mở riêng vòi I trong 15 phút và vòi II trong 20 phút thì chỉ được \(\frac{1}{5}\) nên ta có phương trình: \(\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\\\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\end{array} \right.\).

Giải hệ phương trình suy ra \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{{225}}\\\frac{1}{y} = \frac{1}{{150}}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x = 225\\y = 150\end{array} \right.\) (thỏa mãn).

Vậy vòi thứ I chảy một mình trong 225 phút = 3,75 giờ thì đầy bể.

Vòi thứ II chảy một mình trong 150 phút = 2,5 giờ thì đầy bể.

Lời giải

Đáp án đúng là: A

Gọi x, y (giờ) lần lượt là thời gian tổ I và tổ II làm một mình xong công việc

(0 < x, y < 6).

Trong 1 giờ tổ I làm được \(\frac{1}{x}\) công việc, tổ II làm được \(\frac{1}{y}\) công việc.

Do đó, ta có phương trình \(\frac{1}{x} + \frac{1}{y} = \frac{1}{6}\) (1)

Hai tổ làm chung trong 5 giờ được số phần công việc là: \(5\left( {\frac{1}{x} + \frac{1}{y}} \right) = \frac{5}{6}\) (công việc)

Phần công việc còn lại là 1 – \(\frac{5}{6}\) = \(\frac{1}{6}\) (công việc)

Do cải tiến cách làm nên năng suất của tổ I tăng 1,5 lần nên tổ I đã hoàn thành nốt phần công việc còn lại trong 2 giờ do đó ta có: \(2.\frac{{1,5}}{x} = \frac{1}{6}\) suy ra x = 18 (thỏa mãn).

Với x = 18 thì y = 9 (thỏa mãn).

Vậy tổ II làm một mình xong công việc trong 9 giờ.