Câu hỏi:

17/12/2024 2,308

Hai công nhân cùng làm một công việc trong 18 giờ thì xong. Nếu người thứ nhất làm 6 giờ và người thứ hai làm 12 giờ thì chỉ hoàn thành được 50% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc trong bao lâu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi x, y lần lượt là thời gian người thứ nhất và người thứ hai làm một mình xong công việc (x, y > 0, giờ).

Trong 1 giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, người thứ hai làm được \(\frac{1}{y}\) công việc.

Hai người làm chung 18 giờ thì xong, ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{18}}\) (1).

Nếu người thứ nhất làm trong 6 giờ và người thứ hai làm trong 12 giờ thì hoàn thành 50% công việc (tức là \(\frac{1}{2}\) công việc) nên ta có phương trình: \(\frac{6}{x} + \frac{{12}}{y} = \frac{1}{2}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{18}}\\\frac{6}{x} + \frac{{12}}{y} = \frac{1}{2}\end{array} \right.\) .

Thế \(\frac{1}{x} = \frac{1}{{18}} - \frac{1}{y}\) vào phương trình (2) ta được:

6. \(\left( {\frac{1}{{18}} - \frac{1}{y}} \right)\) + \(\frac{{12}}{y}\) = \(\frac{1}{2}\) suy ra \(\frac{6}{y} = \frac{1}{6}\) hay y = 36 (thỏa mãn).

Thay y = 36 vào phương trình (1) được = 36 (thỏa mãn).

Vậy nếu làm riêng thì người thứ nhất hoàn thành công việc trong 36 giờ, người thứ hai hoàn thành công việc trong 36 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y lần lượt là số ngày để đổi I và đội II hoàn thành công việc nếu làm riêng một mình (x, y > 0).

Mỗi ngày đội I làm được \(\frac{1}{x}\) (công việc) và đội II làm được \(\frac{1}{y}\) (công việc).

Mỗi ngày đội I làm được nhiều gấp rưỡi đội II nên ta có phương trình \(\frac{1}{x}\) = 1,5.\(\frac{1}{y}\) hay

\(\frac{1}{x}\) = \(\frac{3}{2}.\frac{1}{y}\) (1).

Hai đội làm chung trong 24 ngày thì xong công việc nên mỗi ngày, hai đội làm chung được \(\frac{1}{{24}}\) (công việc). Ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\) (2).

Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{3}{2}.\frac{1}{y}\\\frac{1}{x} + \frac{1}{y} = \frac{1}{{24}}\end{array} \right.\)

Đặt u = \(\frac{1}{x}\) và v = \(\frac{1}{y}\) thì ta có hệ phương trình bậc nhất hai ẩn mới là u và v như sau:

\(\left\{ \begin{array}{l}u = \frac{3}{2}v\\u + v = \frac{1}{{24}}\end{array} \right.\)

Thế u = \(\frac{3}{2}\)v vào phương trình u + v = \(\frac{1}{{24}}\) được \(\frac{3}{2}\)v + v = \(\frac{1}{{24}}\) hay \(\frac{5}{2}\)v = \(\frac{1}{{24}}\) suy ra

v = \(\frac{1}{{60}}\).

Do đó, u = \(\frac{3}{2}\)v = \(\frac{3}{2}\).\(\frac{1}{{60}}\) = \(\frac{1}{{40}}\).

Từ đó, ta có: u = \(\frac{1}{x}\) = \(\frac{1}{{40}}\) suy ra u = 40; v = \(\frac{1}{y}\) = \(\frac{1}{{60}}\) suy ra y = 60.

Các giá trị tìm được của x và y đều thỏa mãn điều kiện.

Vậy nếu làm một mình thì đội I làm xong đoạn đường đó trong 40 ngày, còn đội II làm xong trong 60 ngày.

Lời giải

Đáp án đúng là: C

Đổi 1 giờ 30 phút = 90 phút.

Gọi thời gian vòi thứ nhất và vòi thứ hai chảy một mình đầy bể là x, y (x, y > 90, phút).

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai làm được \(\frac{1}{y}\) bể.

Nếu hai vòi nước cùng chảy vào một bể không có nước thì bể sẽ đầy 90 phút nên ta có phương trình: \(90.\frac{1}{x} + 90.\frac{1}{y} = 1\) hay \(\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\) (1).

Nếu mở riêng vòi I trong 15 phút và vòi II trong 20 phút thì chỉ được \(\frac{1}{5}\) nên ta có phương trình: \(\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\) (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{{90}}\\\frac{{15}}{x} + \frac{{20}}{y} = \frac{1}{5}\end{array} \right.\).

Giải hệ phương trình suy ra \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{{225}}\\\frac{1}{y} = \frac{1}{{150}}\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}x = 225\\y = 150\end{array} \right.\) (thỏa mãn).

Vậy vòi thứ I chảy một mình trong 225 phút = 3,75 giờ thì đầy bể.

Vòi thứ II chảy một mình trong 150 phút = 2,5 giờ thì đầy bể.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay