Câu hỏi:

20/12/2024 10

Cho hàm số \[f(x,y,z) = xy + ({x^2} + {y^2})\arctan z\]. Giá trị hàm số tại điểm M(0;1;10)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \[f(x,y) = {x^3} + 3x{y^2} - 15x - 12y\]có điểm dừng (-2,-1) và tại đó \[{\left( {\frac{{{\partial ^2}f}}{{\partial x\partial y}}( - 2, - 1)} \right)^2} - \left( {\frac{{{\partial ^2}f}}{{\partial {x^2}}}( - 2, - 1)} \right)\left( {\frac{{{\partial ^2}f}}{{\partial {y^2}}}( - 2, - 1)} \right) < 0\]. Khi đó hàm số

Xem đáp án » 20/12/2024 31

Câu 2:

Tìm giới hạn \[\mathop {\lim }\limits_{(x,y) \to (0,0)} \frac{1}{2}({e^{xy}} + {e^{ - xy}})\]. Tính \[\frac{{\partial z}}{{\partial y}}(1;1)\]

Xem đáp án » 20/12/2024 30

Câu 3:

Miền xác định của hàm số \[f(x,y) = \sqrt {4 - {x^2} - {y^2}} - \sqrt[4]{{{x^2} + {y^2} - 1}}\]là tập hợp những điểm nằm trên đường tròn tâm O(0;0) với bán kính:

Xem đáp án » 20/12/2024 29

Câu 4:

Miền xác định của hàm số \[f(x,y) = \arcsin (3x - {y^2})\] là:

Xem đáp án » 20/12/2024 27

Câu 5:

Chuỗi \[\mathop \sum \limits_{n = 1}^\infty {(\frac{2}{3})^n}\]. có tổng S bằng:

Xem đáp án » 20/12/2024 22

Câu 6:

Cho hàm số \[z = \frac{1}{2}({e^{xy}} + {e^{ - xy}})\]. Tính \[\frac{{\partial z}}{{\partial y}}(1;1)\]

Xem đáp án » 20/12/2024 21

Câu 7:

Cho hàm số \[z = f(x,y) = {e^{2x + 3y}}\]. Chọn đáp án đúng?

Xem đáp án » 20/12/2024 20

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store