Câu hỏi:

23/12/2024 175

Một con lắc lò xo treo thẳng đứng gồm vật có khối lượng \[m = 0,20{\rm{ }}kg\] gắn vào lò xo nhẹ có độ cứng k. Trong quá trình vật dao động với chu kì 0,40 s, chiều dài của lò xo thay đổi trong khoảng \[{\ell _{\min }} = 0,20m\] đến \[{\ell _{\max }} = 0,24m\]. Gia tốc trọng trường tại nơi treo con lắc là 9,8 m/s2. Xác định:

a) Biên độ của dao động.

b) Tốc độ cực đại và gia tốc cực đại của vật.

c) Chiều dài của lò xo khi chưa biến dạng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tần số góc: \[\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,4}} = 5\pi \,\,rad/s\]

a) Biên độ \(A = \frac{{{\ell _{\max }} - {\ell _{\min }}}}{2} = \frac{{0,24 - 0,2}}{2} = 0,02\;{\rm{m}}\)

b) Tốc độ cực đại: \({v_{\max }} = \omega A = 5\pi .0,02 = 0,3\;{\rm{m/s}}\)

Gia tốc cực đại: \({a_{\max }} = {\omega ^2}A = {\left( {5\pi } \right)^2}.0,02 = 5{\rm{\;m/}}{{\rm{s}}^{\rm{2}}}\)

c) Độ cứng của lò xo: \(k = \frac{{4{\pi ^2}m}}{{{T^2}}} = \frac{{4{\pi ^2}.0,2}}{{0,{4^2}}} = 49{\rm{\;N/m}}\)

Độ dãn của lò xo khi vật ở vị trí cân bằng là: \(\Delta {\ell _0} = \frac{{mg}}{k} = \frac{{0,2.9,8}}{{49}} = 0,04\;{\rm{m}}\)

Chiều dài của lò xo khi chưa biến dạng: \(\Delta {\ell _{\max }} = A + \Delta {\ell _0} = 0,02\; + 0,04\; = 0,06\;{\rm{m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)

Tại thời điểm ban đầu:

\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)

Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.

Câu 2

Lời giải

Từ đồ thị, ta thấy điểm cao nhất của đồ thị ứng với \(x = 6\,cm = A.\)

Tại thời điểm ban đầu (t = 0) vật đi qua vị trí \[x = - 3\]cm theo chiều dương, sau khoảng thời gian 0,2 s thì trạng thái này lặp lại. Chu kì của dao động: \[T = 0,2s \Rightarrow \omega = \frac{{2\pi }}{T} = 10\pi \]rad/s.

Trạng thái của vật tại thời điểm ban đầu: \(\left\{ \begin{array}{l}x = - 3 = 6\cos \varphi \\v > 0\end{array} \right. \Rightarrow \varphi = - \frac{{2\pi }}{3}\)

Phương trình dao động của vật: \[x = 6\cos \left( {10\pi t - \frac{{2\pi }}{3}} \right) \Rightarrow v = 60\pi \cos \left( {10\pi t - \frac{\pi }{6}} \right)\]cm. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP