Một con lắc lò xo treo thẳng đứng gồm vật có khối lượng \[m = 0,20{\rm{ }}kg\] gắn vào lò xo nhẹ có độ cứng k. Trong quá trình vật dao động với chu kì 0,40 s, chiều dài của lò xo thay đổi trong khoảng \[{\ell _{\min }} = 0,20m\] đến \[{\ell _{\max }} = 0,24m\]. Gia tốc trọng trường tại nơi treo con lắc là 9,8 m/s2. Xác định:
a) Biên độ của dao động.
b) Tốc độ cực đại và gia tốc cực đại của vật.
c) Chiều dài của lò xo khi chưa biến dạng.
Một con lắc lò xo treo thẳng đứng gồm vật có khối lượng \[m = 0,20{\rm{ }}kg\] gắn vào lò xo nhẹ có độ cứng k. Trong quá trình vật dao động với chu kì 0,40 s, chiều dài của lò xo thay đổi trong khoảng \[{\ell _{\min }} = 0,20m\] đến \[{\ell _{\max }} = 0,24m\]. Gia tốc trọng trường tại nơi treo con lắc là 9,8 m/s2. Xác định:
a) Biên độ của dao động.
b) Tốc độ cực đại và gia tốc cực đại của vật.
c) Chiều dài của lò xo khi chưa biến dạng.
Câu hỏi trong đề: 14 bài tập Chủ đề 1. Dao động có lời giải !!
Quảng cáo
Trả lời:
Tần số góc: \[\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,4}} = 5\pi \,\,rad/s\]
a) Biên độ \(A = \frac{{{\ell _{\max }} - {\ell _{\min }}}}{2} = \frac{{0,24 - 0,2}}{2} = 0,02\;{\rm{m}}\)
b) Tốc độ cực đại: \({v_{\max }} = \omega A = 5\pi .0,02 = 0,3\;{\rm{m/s}}\)
Gia tốc cực đại: \({a_{\max }} = {\omega ^2}A = {\left( {5\pi } \right)^2}.0,02 = 5{\rm{\;m/}}{{\rm{s}}^{\rm{2}}}\)
c) Độ cứng của lò xo: \(k = \frac{{4{\pi ^2}m}}{{{T^2}}} = \frac{{4{\pi ^2}.0,2}}{{0,{4^2}}} = 49{\rm{\;N/m}}\)
Độ dãn của lò xo khi vật ở vị trí cân bằng là: \(\Delta {\ell _0} = \frac{{mg}}{k} = \frac{{0,2.9,8}}{{49}} = 0,04\;{\rm{m}}\)
Chiều dài của lò xo khi chưa biến dạng: \(\Delta {\ell _{\max }} = A + \Delta {\ell _0} = 0,02\; + 0,04\; = 0,06\;{\rm{m}}{\rm{.}}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)
Tại thời điểm ban đầu:
\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)
Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.
Lời giải
Từ phương trình: \[x = 2\cos \left( {4\pi t - \frac{\pi }{6}} \right)\] (cm) ta xác định được các đại lượng:
- Biên độ: A = 2 cm
- Tần số góc: \[\omega = 4\pi \,\left( {rad/s} \right)\]
- Chu kì: \[T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,5\,s\]
- Tần số: \[f = \frac{1}{T} = \frac{1}{{0,5}} = 2\,Hz\]
- Pha ban đầu: \[\varphi = - \frac{\pi }{6}\,rad\]
- Pha của dao động tại thời điểm t = 1 s: \[4\pi .1 - \frac{\pi }{6} = \frac{{23\pi }}{6}rad\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.