Câu hỏi:
09/01/2025 9Cho biểu thức \(D = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với x ≥ 0, x ≠ 1. Giá trị lớn nhất của D là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Với x ≥ 0, x ≠ 1, ta có:
\(D = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\(D = \left[ {\frac{{\left( {\sqrt x - 2} \right){{\left( {\sqrt x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{\left( {\sqrt x + 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}} \right].\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\(D = \left[ {\frac{{\left( {\sqrt x - 2} \right){{\left( {\sqrt x + 1} \right)}^2} - \left( {\sqrt x + 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}} \right].\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)
\(D = \frac{{\left[ {x\sqrt x + 2x + \sqrt x - 2x - 4\sqrt x - 2 - x\sqrt x + \sqrt x - 2x + 2} \right]}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {x - 1} \right)}}{2}\)
\(D = \frac{{\left( { - 2x - 2\sqrt x } \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {x - 1} \right)}}{2} = \frac{{ - 2\sqrt x \left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{2} = - \sqrt x \left( {\sqrt x - 1} \right)\).
Ta có: \(D = - \sqrt x \left( {\sqrt x - 1} \right) = - x + \sqrt x = - x + 2.\frac{1}{2}\sqrt x - \frac{1}{4} + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\).
Nhận thấy \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} \le 0\) nên \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\).
Dấu “=” xảy ra khi x = \(\frac{1}{4}\).
Vậy GTLN của D = \(\frac{1}{4}\) khi x = \(\frac{1}{4}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giá trị nhỏ nhất của biểu thức \(A = \frac{{x + 2}}{{\sqrt x }}\) (x > 0) là
Câu 2:
Cho biểu thức \(A = \frac{{\sqrt x + 5}}{{2\sqrt x - 1}}\) và \(B = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với x ≥ 0, x ≠ 1, x ≠ \(\frac{1}{4}\). Giá trị của x để M = A.B đạt giá trị lớn nhất là:
Câu 3:
Giá trị lớn nhất của biểu thức \(B = \frac{{2\sqrt x + 9}}{{\sqrt x + 2}}\) (x ≥ 0) là
Câu 4:
Biểu thức \(C = \frac{{2\sqrt x + 11}}{{3\sqrt x + 2}}\) đạt giá trị lớn nhất tại x bằng:
Câu 5:
Biểu thức \(D = \frac{{x - \sqrt x + 1}}{x}\) đạt giá trị nhỏ nhất tại x bằng:
Câu 6:
Cho biểu thức \(A = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}}\) và \(B = \frac{{\sqrt x + 2}}{{x + \sqrt x }}\) với x > 0 và x ≠ 1. Tính giá trị nhỏ nhất của \(P = \frac{A}{B} + 2018\) khi x > 1
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!