Câu hỏi:

09/01/2025 137

Cho biểu thức \(D = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\) với x ≥ 0, x ≠ 1. Giá trị lớn nhất của D là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Với x ≥ 0, x ≠ 1, ta có:

\(D = \left( {\frac{{\sqrt x - 2}}{{x - 1}} - \frac{{\sqrt x + 2}}{{x + 2\sqrt x + 1}}} \right).\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(D = \left[ {\frac{{\left( {\sqrt x - 2} \right){{\left( {\sqrt x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}} - \frac{{\left( {\sqrt x + 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}} \right].\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(D = \left[ {\frac{{\left( {\sqrt x - 2} \right){{\left( {\sqrt x + 1} \right)}^2} - \left( {\sqrt x + 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {\sqrt x + 1} \right)}^2}}}} \right].\frac{{{{\left( {1 - x} \right)}^2}}}{2}\)

\(D = \frac{{\left[ {x\sqrt x + 2x + \sqrt x - 2x - 4\sqrt x - 2 - x\sqrt x + \sqrt x - 2x + 2} \right]}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {x - 1} \right)}}{2}\)

\(D = \frac{{\left( { - 2x - 2\sqrt x } \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {x - 1} \right)}}{2} = \frac{{ - 2\sqrt x \left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x + 1} \right)}^2}}}.\frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{2} = - \sqrt x \left( {\sqrt x - 1} \right)\).

Ta có: \(D = - \sqrt x \left( {\sqrt x - 1} \right) = - x + \sqrt x = - x + 2.\frac{1}{2}\sqrt x - \frac{1}{4} + \frac{1}{4} = - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4}\).

Nhận thấy \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} \le 0\) nên \( - {\left( {\sqrt x - \frac{1}{2}} \right)^2} + \frac{1}{4} \le \frac{1}{4}\).

Dấu “=” xảy ra khi x = \(\frac{1}{4}\).

Vậy GTLN của D = \(\frac{1}{4}\) khi x = \(\frac{1}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức \(A = \frac{{\sqrt x + 5}}{{2\sqrt x - 1}}\) và \(B = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{\sqrt x - 1}}{{\sqrt x + 1}} - \frac{{3\sqrt x + 1}}{{x - 1}}\) với x ≥ 0, x ≠ 1, x ≠ \(\frac{1}{4}\). Giá trị của x để M = A.B đạt giá trị lớn nhất là:

Xem đáp án » 09/01/2025 704

Câu 2:

Cho biểu thức \(A = \frac{{\sqrt x - 2}}{{\sqrt x + 3}}\) và \(B = \left( {\frac{{3\sqrt x + 6}}{{x - 4}} + \frac{{\sqrt x }}{{\sqrt x - 2}}} \right):\frac{{x - 9}}{{\sqrt x - 3}}\) với

x ≥ 0, x ≠ 4, x ≠ 9. Giá trị lớn nhất của biểu thức M = A.B là:

Xem đáp án » 09/01/2025 479

Câu 3:

Cho hai biểu thức \(P = \frac{{x + 3}}{{\sqrt x - 2}}\) và \(Q = \frac{{\sqrt x - 1}}{{\sqrt x + 2}} - \frac{{5\sqrt x - 2}}{{4 - x}}\) với x > 0 và

x ≠ 4. Giá trị của x để biểu thức \(\frac{P}{Q}\) đạt giá trị nhỏ nhất là

Xem đáp án » 09/01/2025 464

Câu 4:

Cho biểu thức \(A = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}}\) và \(B = \frac{{\sqrt x + 2}}{{x + \sqrt x }}\) với x > 0 và x ≠ 1. Tính giá trị nhỏ nhất của \(P = \frac{A}{B} + 2018\) khi x > 1

Xem đáp án » 09/01/2025 379

Câu 5:

Cho biểu thức \(P = \frac{{x - 9}}{{\sqrt x }}\) và \(Q = \frac{{\sqrt x + 1}}{{\sqrt x + 3}} - \frac{{2\sqrt x + 5}}{{9 - x}}\) với x > 0 và x ≠ 9. Tổng tất cả các giá trị của x để A = P.Q đạt giá trị nhỏ nhất là

Xem đáp án » 09/01/2025 139

Câu 6:

Tìm giá trị nhỏ nhất của các biểu thức sau:

a) A = x – 2\(\sqrt x \);

b) C = \(\frac{{2\sqrt x - 9}}{{\sqrt x + 1}}\);

c) \(D = \frac{{x + 4\sqrt x + 12}}{{\sqrt x + 3}}\).

Xem đáp án » 09/01/2025 65

Bình luận


Bình luận