Câu hỏi:

12/01/2025 1,363

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 12 đến câu 13. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho \(a,b,c\) là ba số thực dương khác 1. Đồ thị các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) được cho trong hình vẽ bên

Cho \(a,b,c\) là ba số thực dương khác 1. Đồ thị các hàm số \(y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\) được cho trong hình vẽ bêna) Hàm số \(y = {\log _c}x\) là hàm nghịch biến trên kho (ảnh 1)

a) Hàm số \(y = {\log _c}x\) là hàm nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).

b) Đồ thị hàm số \(y = {\log _b}x\) đi qua điểm \(M\left( {0;1} \right)\).

c) Hàm số \(y = {\log _a}x\) có cơ số \(a > 1\).

d) \(c < a < b\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) Đ

a) Dựa vào đồ thị hàm số \(y = {\log _c}x\) ta thấy hàm số \(y = {\log _c}x\) là hàm nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).

b) Đồ thị hàm số \(y = {\log _b}x\) đi qua điểm \(\left( {1;0} \right)\).

c) Hàm số \(y = {\log _a}x\) đồng biến nên \(a > 1\).

d) Hàm số \(y = {\log _c}x\) là hàm nghịch biến nên \(0 < c < 1\).

Hàm số \(y = {\log _a}x\), \(y = {\log _b}x\) đồng biến nên \(a > 1,b > 1\).

Với \(x > 1\) thì \({\log _a}x > {\log _b}x\)\( \Leftrightarrow {\log _a}x > \frac{1}{{{{\log }_x}b}}\)\( \Leftrightarrow {\log _a}x.{\log _x}b > 1\)\( \Leftrightarrow {\log _a}b > 1\)\( \Leftrightarrow b > a\).

Do đó \(c < a < b\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Biến cố A: “Cả hai tấm thẻ đều đánh số chẵn” nên ta có \(n\left( A \right) = C_4^2\).

Biến cố B: “Chỉ có một tấm thẻ đánh số chẵn” nên ta có \(n\left( B \right) = C_5^1.C_4^1\).

Biến cố C: “Tích hai số đánh trên hai tấm thẻ là một số chẵn” nên ta có \(n\left( C \right) = C_4^2 + C_5^1.C_4^1\).

Ta có \(P\left( C \right) = \frac{{C_4^2 + C_5^1.C_4^1}}{{C_9^2}} = \frac{{13}}{{18}} \approx 0,72\).

Lời giải

Hướng dẫn giải

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\) và \(SA \bot \left( {ABCD} \right)\). Biết góc giữa \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) là \(60^\circ \). Tính góc phẳng nhị (ảnh 1)

Gọi \(O\) là giao điểm \(AC\) và \(BD\).

Vì \(ABCD\) là hình vuông nên \(AC \bot BD\) mà \(SA \bot BD\left( {SA \bot \left( {ABCD} \right)} \right)\) nên \(BD \bot \left( {SAC} \right)\)\( \Rightarrow BD \bot SO\).

Lại có \(CO \bot BD\), suy ra \(\widehat {SOC}\) là góc phẳng nhị diện \(\left[ {S,BD,C} \right]\).

Có \(AC = a\sqrt 2 \Rightarrow OC = \frac{{a\sqrt 2 }}{2}\), \(\left( {SC,\left( {ABCD} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA} = 60^\circ \).

Xét \(\Delta SAC\) có \(SC = \frac{{AC}}{{\cos \widehat {SCA}}} = \frac{{a\sqrt 2 }}{{\cos 60^\circ }} = 2a\sqrt 2 \), \(SA = AC\tan \widehat {SCA} = a\sqrt 2 .\tan 60^\circ = a\sqrt 6 \).

Xét \(\Delta SAO\) có \(SO = \sqrt {S{A^2} + A{O^2}} = \sqrt {6{a^2} + \frac{{{a^2}}}{2}} = \frac{{a\sqrt {26} }}{2}\).

Xét \(\Delta SOC\) có \(\cos \widehat {SOC} = \frac{{S{O^2} + O{C^2} - S{C^2}}}{{2.SO.OC}} = \frac{{\frac{{{a^2}.26}}{4} + \frac{{2{a^2}}}{4} - 8{a^2}}}{{2.\frac{{a\sqrt {26} }}{2}.\frac{{a\sqrt 2 }}{2}}} = \frac{{ - 1}}{{\sqrt {13} }}\)\( \Rightarrow \widehat {SOC} \approx 106^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Gieo hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 4”, \(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 4”. Tập hợp mô tả biến cố \(AB\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP