Câu hỏi:

12/01/2025 182 Lưu

Mệnh đề nào sau đây là đúng?

A. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.

B. Hai đường thẳng cùng vuông góc gới một đường thẳng thì song song với nhau.

C. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau.

D. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Vì A và B là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) \Rightarrow P\left( B \right) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}\).

Lời giải

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) Đ

Cho hình chóp  S . A B C  có  S A ⊥ ( A B C )  và tam giác  A B C  vuông tại  B . Gọi  H , K  là hình chiếu vuông góc của  A  trên các cạnh  S B , S C . Khi đó:  a)  S A ⊥ B C .  b) Tam giác  S B C  cân tại  B .  c)  A H  vuông góc với mặt phẳng  ( S B C ) .  d) Giả sử  H K  cắt  B C  tại  D . Khi đó  ( A C , A D ) = 90 ∘ . (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

b) Ta có \(BC \bot AB\) (do \(\Delta ABC\) vuông tại \(B\)) và \(BC \bot SA\)

Suy ra \(BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot SB\). Do đó \(\Delta SBC\) vuông tại \(B\).

c) Vì \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AH\) mà \(AH \bot SB\) \( \Rightarrow AH \bot \left( {SBC} \right)\).

d) Vì \(AH \bot \left( {SBC} \right)\) nên \(AH \bot SC\).

Mà \(AK \bot SC\) nên \(SC \bot \left( {AHK} \right)\).

Lại có \(AD \subset \left( {AHK} \right) \Rightarrow SC \bot AD\)(1).

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AD\) (2).

Từ (1) và (2), ta có \(AD \bot \left( {SAC} \right) \Rightarrow AD \bot AC \Rightarrow \left( {AD,AC} \right) = 90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP