Câu hỏi:

12/01/2025 181 Lưu

Giá trị của biểu thức \(A = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }}{{.3}^{1 + \sqrt 5 }}}}\) bằng

A. \({6^{ - \sqrt 5 }}\).

B. \(18\).

C. \(1\).

D. \(9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(A = \frac{{{{\left( {2.3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }}{{.3}^{1 + \sqrt 5 }}}}\)\( = \frac{{{2^{3 + \sqrt 5 }}{{.3}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }}{{.3}^{1 + \sqrt 5 }}}}\)\( = {2.3^2} = 18\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Vì A và B là hai biến cố xung khắc nên \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) \Rightarrow P\left( B \right) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}\).

Lời giải

Hướng dẫn giải

a) Đ, b) S, c) Đ, d) Đ

Cho hình chóp  S . A B C  có  S A ⊥ ( A B C )  và tam giác  A B C  vuông tại  B . Gọi  H , K  là hình chiếu vuông góc của  A  trên các cạnh  S B , S C . Khi đó:  a)  S A ⊥ B C .  b) Tam giác  S B C  cân tại  B .  c)  A H  vuông góc với mặt phẳng  ( S B C ) .  d) Giả sử  H K  cắt  B C  tại  D . Khi đó  ( A C , A D ) = 90 ∘ . (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

b) Ta có \(BC \bot AB\) (do \(\Delta ABC\) vuông tại \(B\)) và \(BC \bot SA\)

Suy ra \(BC \bot \left( {SAB} \right)\) \( \Rightarrow BC \bot SB\). Do đó \(\Delta SBC\) vuông tại \(B\).

c) Vì \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AH\) mà \(AH \bot SB\) \( \Rightarrow AH \bot \left( {SBC} \right)\).

d) Vì \(AH \bot \left( {SBC} \right)\) nên \(AH \bot SC\).

Mà \(AK \bot SC\) nên \(SC \bot \left( {AHK} \right)\).

Lại có \(AD \subset \left( {AHK} \right) \Rightarrow SC \bot AD\)(1).

Vì \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AD\) (2).

Từ (1) và (2), ta có \(AD \bot \left( {SAC} \right) \Rightarrow AD \bot AC \Rightarrow \left( {AD,AC} \right) = 90^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP