Câu hỏi:
12/01/2025 18Anh Toàn được tuyển dụng vào một công ty đầu năm 2013. Công ty trả lương cho anh theo nguyên tắc. Lương khởi điểm anh nhận là 6 triệu đồng/tháng và cứ sau 3 năm công ty lại tăng lương cho anh thêm 25% số lương đang hưởng. Hiện nay (năm 2024) anh đang được hưởng lương là bao nhiêu triệu đồng một tháng? (kết quả làm tròn đến hàng phần mười).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Trả lời: 11,7
Số tiền anh Toàn nhận được sau \(n\) lần tăng lương là \({S_n} = A{\left( {1 + r} \right)^n}\) trong đó:
\(A\) là số tiền lương tháng đầu tiên người đó nhận được
\(r\) là số % lương người đó được tăng
\(n\) là kì hạn người đó được tăng lương.
Từ năm 2013 đến năm 2024 anh Toàn được 3 lần tăng lương.
Do đó số tiền anh nhận được ở năm 2024 là \(6{\left( {1 + 25\% } \right)^3} \approx 11,7\) triệu đồng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một lô hàng có 20 sản phẩm giống nhau trong đó có 4 sản phẩm không đạt chất lượng còn lại là sản phẩm đạt chất lượng tốt. Mỗi lần kiểm tra, người ta chọn ra ngẫu nhiên 2 sản phẩm. Tính xác suất để lấy ra được ít nhất một sản phẩm tốt.
Câu 2:
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) và tam giác \(ABC\) vuông tại \(B\). Gọi \(H,K\) là hình chiếu vuông góc của \(A\) trên các cạnh \(SB,SC\). Khi đó:
a) \(SA \bot BC\).
b) Tam giác \(SBC\) cân tại \(B\).
c) \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).
d) Giả sử \(HK\) cắt \(BC\) tại \(D\). Khi đó \(\left( {AC,AD} \right) = 90^\circ \).
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành, tam giác \(SAD\) là tam giác đều. Góc giữa hai đường thẳng \(BC\) và \(SA\) bằng bao nhiêu độ?
Câu 4:
PHẦN I. TRẮC NGHIỆM KHÁCH QUAN
A. TRẮC NGHIỆM NHIỀU PHƯƠNG ÁN LỰA CHỌN. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng)
Trung vị của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây?
Câu 5:
Cho hai biến cố A và B là hai biến cố xung khắc. Biết \(P\left( A \right) = \frac{1}{4},P\left( {A \cup B} \right) = \frac{1}{2}\). Tính \(P\left( B \right)\).
Câu 6:
Rút gọn biểu thức \(P = {x^{\frac{1}{3}}}.\sqrt[6]{x}\) với \(x > 0\).
Câu 7:
Lốc xoáy là hiện tượng một luồng không khí xoáy tròn mở rộng ra từ một đám mây dông xuống tới mặt đất. Các cơn lốc xoáy thường có sức tàn phá rất lớn. Tốc độ của gió (đơn vị: dặm/giờ) gần tâm của một cơn lốc xoáy được tính bởi công thức \(S = k.\log d + 65\) (Nguồn: Ron Larson, Intermediate Algebra, Cengage) trong đó \(d\)(đơn vị: dặm) là quãng đường cơn lốc xoáy di chuyển được. Biết tốc độ của gió ở gần tâm (làm tròn kết quả đến hàng đơn vị) khi cơn lốc xoáy di chuyển được quãng đường là 10 dặm là 158 (dặm/giờ). Hãy tính tốc độ của gió ở gần tâm (làm tròn kết quả đến hàng đơn vị) khi cơn lốc xoáy di chuyển được quãng đường là 12 dặm.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
về câu hỏi!