Câu hỏi:
12/01/2025 620
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho \(a,b\) là hai số thực dương và biểu thức \(A = 3{\log _2}a + {\log _2}b\).
a) Nếu \(a = 4;b = 2\) thì \(A = 6\).
b) Biểu thức \(A = {\log _2}\left( {{a^3}b} \right)\).
c) Nếu \({a^3}b = 8\). Giá trị của biểu thức \(A\) bằng 3.
d) Nghiệm của phương trình \({\log _2}x = 2A\) là \(x = {a^3}{b^2}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
a) S, b) Đ, c) Đ, d) S
a) Nếu \(a = 4;b = 2\) thì \(A = 3{\log _2}4 + {\log _2}2\)\( = 3{\log _2}{2^2} + {\log _2}2 = 6 + 1 = 7\).
b) \(A = 3{\log _2}a + {\log _2}b\)\( = {\log _2}{a^3} + {\log _2}b\)\( = {\log _2}\left( {{a^3}b} \right)\).
c) Nếu \({a^3}b = 8\) thì \(A = {\log _2}8 = 3\).
d) \({\log _2}x = 2A = 2{\log _2}\left( {{a^3}b} \right)\)\( \Leftrightarrow {\log _2}x = {\log _2}{\left( {{a^3}b} \right)^2}\)\( \Leftrightarrow x = {\left( {{a^3}b} \right)^2} = {a^6}{b^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Trả lời: 90
Vì \(\Delta ABK = \Delta BCH\) (\(AB = BC,AK = BH,\widehat {KAB} = \widehat {CBH} = 90^\circ \)) nên \(\widehat {BHC} = \widehat {BKA}\).
Có \(\widehat {ABK} + \widehat {BKA} = 90^\circ \Rightarrow \widehat {ABK} + \widehat {BHC} = 90^\circ \)\( \Rightarrow BK \bot CH\)(1).
Mà \(SH \bot \left( {ABCD} \right) \Rightarrow SH \bot BK\) (2).
Từ (1) và (2), ta có \(BK \bot \left( {SCH} \right) \Rightarrow BK \bot SC\).
Do đó \(\left( {BK,SC} \right) = 90^\circ \).
Lời giải
Đáp án đúng là: A
\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a \subset \left( \beta \right)\end{array} \right. \Rightarrow \left( \alpha \right) \bot \left( \beta \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.