Câu hỏi:

14/01/2025 107

Sử dụng dữ kiện của bài toán dưới đây để trả lời Bài 7, 8.

Cho hai đường tròn (O; R) và (O'; r) (R > r) tiếp xúc ngoài tại A. Vẽ các bán kính OB ∕∕ O'D với B, D ở cùng phía nửa mặt phẳng bờ OO'. Đường thẳng BD và OO' cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O') với G, H nằm ở nửa mặt phẳng bờ OO' không chứa B, D.

Tính OI theo R và r.

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Tính OI theo R và r. (ảnh 1)

Xét tam giác IOB có OB ∕∕ O'D (gt)

Áp dụng định lí Thalès ta có: \(\frac{{OI}}{{O'I}} = \frac{{OB}}{{O'D}}\) suy ra \(\frac{{OI}}{{O'I}} = \frac{R}{r}\)

mà IO' = IO – OO' = OI – (OA + AO') = OA – (R + r)

Nên \(\frac{{OI}}{{O'I}} = \frac{{OI}}{{OI - (R + r)}} = \frac{R}{r}\) suy ra OI.r = R[OI – (R + r)].

Suy ra OI.R – OI.r = R(R + r)

OI(R – r) = R(R + r)

Suy ra \(OI = \frac{{R\left( {R + r} \right)}}{{R - r}}\).

Câu hỏi cùng đoạn

Câu 2:

Chọn câu đúng.

Đáp án chính xác

Xem lời giải

verified Lời giải của GV VietJack

Đáp án đúng là: A

Chọn câu đúng. A. BD, OO' và GH đồng quy. (ảnh 1)

Gọi giao điểm của OO' và GH là I'.

Ta có: OG ∕∕ O'H (cùng vuông với GH).

Theo định lí Thalès trong tam giác OG I', ta có:

\(\frac{{OI'}}{{O'I'}} = \frac{{OG}}{{O'H}} = \frac{R}{r}\) hay \(\frac{{OI'}}{{O'I'}} = \frac{{OI}}{{O'I}} = \frac{R}{r}\).

Suy ra I' trùng với I. Vậy BD, OO' và GH đồng quy.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai đường tròn (O) và (O') cắt nhau ở A và B (O và O' thuộc hai nửa mặt phẳng bờ AB). Kẻ các đường kính BOC và BO'D. Biết rằng OO' = 5 cm,

OB = 4 cm, O'B = 3 cm. Tính diện tích tam giác BCD.

Xem đáp án » 14/01/2025 560

Câu 2:

Cho đường tròn (O; R) đường kính AB, C là một điểm bất kì nằm giữa A và B. Vẽ đường tròn tâm I, đường kính CA; đường tròn tâm K, đường kính CB.

a) Xét vị trí tương đối của hai đường tròn (I) và (K).

b) Đường vuông góc với AB tại C cắt đường tròn (O) ở D và E. DA cắt đường tròn (I) ở M, DB cắt đường tròn (K) ở N.

c) Xác định vị trí của C trên đường kính AB sao cho MN có độ dài lớn nhất.

Xem đáp án » 14/01/2025 328

Câu 3:

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài MN với M ∈ (O) và N ∈ (O'). Gọi P là điểm đối xứng với M qua OO', Q là điểm đối xứng với N qua OO'. Khi đó, MN + QP bằng

Xem đáp án » 14/01/2025 243

Câu 4:

Cho đoạn OO' và điểm A nằm trên đoạn OO' sao cho OA = 2O'A. Đường tròn (O) bán kính OA và đường tròn (O') bán kính O'A. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C. Khi đó:

Xem đáp án » 14/01/2025 230

Câu 5:

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Vẽ hai bán kính OM và O'N song song với nhau thuộc cùng một nửa mặt phẳng có bờ OO'. Tam giác MAN là tam giác gì?

Xem đáp án » 14/01/2025 201

Câu 6:

Cho hai đường tròn (O) và (O') cắt nhau tại A, B trong đó O' ∈ (O). Kẻ đường kính O'C của đường tròn (O). Chọn khẳng định sai?

Xem đáp án » 14/01/2025 187

Câu 7:

Cho hai đường tròn (O; R) và (O'; r) ở ngoài nhau. Gọi MN là tiếp tuyến chung ngoài, EF là tiếp tuyến chung trong (M và E thuộc (O), N và F thuộc (O'). Tính bán kính của đường tròn (O) khi OO' = 10 cm, MN = 8 cm và EF = 6 cm.

Xem đáp án » 14/01/2025 128
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua