Sử dụng dữ kiện của bài toán dưới đây để trả lời Bài 7, 8.
Cho hai đường tròn (O; R) và (O'; r) (R > r) tiếp xúc ngoài tại A. Vẽ các bán kính OB ∕∕ O'D với B, D ở cùng phía nửa mặt phẳng bờ OO'. Đường thẳng BD và OO' cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O') với G, H nằm ở nửa mặt phẳng bờ OO' không chứa B, D.
Sử dụng dữ kiện của bài toán dưới đây để trả lời Bài 7, 8.
Cho hai đường tròn (O; R) và (O'; r) (R > r) tiếp xúc ngoài tại A. Vẽ các bán kính OB ∕∕ O'D với B, D ở cùng phía nửa mặt phẳng bờ OO'. Đường thẳng BD và OO' cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O') với G, H nằm ở nửa mặt phẳng bờ OO' không chứa B, D.
Tính OI theo R và r.
A. \(OI = \frac{{R + r}}{{R - r}}\).
B. \(OI = \frac{{R - r}}{{R + r}}\).
C. \(OI = \frac{{R\left( {R - r} \right)}}{{R + r}}\).
D. \(OI = \frac{{R\left( {R + r} \right)}}{{R - r}}\).
Quảng cáo
Trả lời:

Đáp án đúng là: D
Xét tam giác IOB có OB ∕∕ O'D (gt)
Áp dụng định lí Thalès ta có: \(\frac{{OI}}{{O'I}} = \frac{{OB}}{{O'D}}\) suy ra \(\frac{{OI}}{{O'I}} = \frac{R}{r}\)
mà IO' = IO – OO' = OI – (OA + AO') = OA – (R + r)
Nên \(\frac{{OI}}{{O'I}} = \frac{{OI}}{{OI - (R + r)}} = \frac{R}{r}\) suy ra OI.r = R[OI – (R + r)].
Suy ra OI.R – OI.r = R(R + r)
OI(R – r) = R(R + r)
Suy ra \(OI = \frac{{R\left( {R + r} \right)}}{{R - r}}\).
Câu hỏi cùng đoạn
Câu 2:
Chọn câu đúng.
A. BD, OO' và GH đồng quy.
B. BD, OO' và GH không đồng quy.
C. Không có ba đường nào đồng quy.
D. Cả A, B, C đều sai.

Đáp án đúng là: A
Gọi giao điểm của OO' và GH là I'.
Ta có: OG ∕∕ O'H (cùng vuông với GH).
Theo định lí Thalès trong tam giác OG I', ta có:
\(\frac{{OI'}}{{O'I'}} = \frac{{OG}}{{O'H}} = \frac{R}{r}\) hay \(\frac{{OI'}}{{O'I'}} = \frac{{OI}}{{O'I}} = \frac{R}{r}\).
Suy ra I' trùng với I. Vậy BD, OO' và GH đồng quy.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 12 cm2.
B. 24 cm2.
C. 48 cm2.
D. 36 cm2.
Lời giải
Đáp án đúng là: B
∆BCD có OO' là đường trung bình suy ra OO' ∕∕ CD.
∆ABC có OI là đường trung bình suy ra OO' ∕∕ CA.
Do đó A, C, D thẳng hàng.
Ta có: ∆BOO' vuông tại B suy ra ∆BCD vuông tại B.
Do đó diện tích tam giác BCD là: S = \(\frac{1}{2}BC.BD = \frac{1}{2}.6.8 = 24\) cm2.
Câu 2
A. MP + NQ.
B. MQ + NP.
C. 2MP.
d. OP + PQ.
Lời giải
Đáp án đúng là: A
Vì P đối xứng với M qua OO', Q là điểm đối xứng với N qua OO' nên MN = QP; P ∈ (O) và Q ∈ (O').
Mà MP ⊥ OO'; NQ ⊥ OO' nên MP ∕∕ NQ mà \(\widehat {NMP} = \widehat {QPM}\) (do \(\widehat {OMN} = \widehat {OPQ};\widehat {OMP} = \widehat {OPM}\)).
Nên MNPQ là hình thang cân.
Có MN là tiếp tuysn chung nên MN ⊥ OM (tính chất) nên \(\widehat {OMN}\) = 90 ° hay \(\widehat {OMP} + \widehat {PMN} = 90^\circ \).
Ta có: OM = OP = R nên ∆OMP cân tại O.
Suy ra \(\widehat {OPM} = \widehat {OMP}\).
Lại có MNPQ là hình thang cân nên \(\widehat {PMN} = \widehat {QPM}\).
Từ đây suy ra \(\widehat {QPM} + \widehat {QPM} = 90^\circ \). Suy ra QP ⊥ OP tại P.
Kẻ tiếp tuyến chung tại A cắt NM tại E và PQ tại F.
Trong đường tròn (O), theo tính chất hai tiếp tuyến cắt nhau, ta có: EM = EA và FP = FA.
Trong đường tròn (O'), theo tính chất hai tiếp tuyến bằng nhau ta có:
EN = EA và FQ = FA.
Suy ra EM = EA = EN = \(\frac{1}{2}MN\).
FP = FA = FQ = \(\frac{1}{2}PQ\).
Suy ra MN + PQ = 2EA + 2FA = 2(EA + FA) = 2EF.
Vì EF là đường trung bình của hình thang MNPQ nên
EF = \(\frac{{MP + NQ}}{2}\) hay MP + NQ = 2EF.
Do đó, MN + PQ = MP + NQ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. AC = CB.
B. \(\widehat {CBO'} = 90^\circ \).
C. CA, CB là hai tiếp tuyến của (O').
D. CA, CB là hai cát tuyến của (O').
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. OD ∕∕ O'C.
B. \(\frac{{AD}}{{AC}} = \frac{1}{2}\).
C. \(\frac{{AD}}{{AC}} = 3\).
D. AD = AC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 7 cm.
B. 1 cm.
D. \(\frac{{17}}{2}\) cm.
D. \(\frac{7}{2}\) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.