Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O\) là tâm của hình lập phương. Khẳng định nào dưới đây là đúng?
Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O\) là tâm của hình lập phương. Khẳng định nào dưới đây là đúng?

A. \(\overrightarrow {AO} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\)
B. \(\overrightarrow {AO} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\)
C. \(\overrightarrow {AO} = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\)
Quảng cáo
Trả lời:
Ta có: \(\overrightarrow {AO} = \frac{1}{2}\overrightarrow {AC'} \)\( = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right)\) (quy tắc hình hộp). Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì hướng bay và vận tốc bay của con chim không đổi nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng.
Mặt khác do thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(\overrightarrow {AB} = 2\overrightarrow {BC} \)
\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{40 - 20 = 2\left( {a - 40} \right)}\\{50 - 40 = 2\left( {b - 50} \right)}\\{50 - 30 = 2\left( {c - 50} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 50}\\{b = 55}\\{c = 60}\end{array} \Rightarrow a + b + c = 165} \right.} \right.\).
Đáp án: \(165\).
Câu 2
A. \(\frac{{2a}}{3}.\)
B. \(\frac{{2a}}{{\sqrt {17} }}.\)
Lời giải
Vì \(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\) và \(ABCD\) là hình vuông.
Suy ra \(OA = OB = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 \cdot \sqrt 2 }}{2} = a.\)
Dựa vào hình vẽ, ta có \(C\left( {a;0;0} \right),B\left( {0;a;0} \right),A\left( { - a;0;0} \right),S\left( {0;0;2a} \right).\)
Suy ra \(\overrightarrow {AS} = \left( {a;0;2a} \right),\overrightarrow {BS} = \left( {0; - a;2a} \right).\)
Mặt phẳng \(\left( {SAB} \right)\) có một cặp vectơ chỉ phương \(\vec u = \left( {1;0;2} \right)\) và \(\vec v = \left( {0; - 1;2} \right)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right|} \right) = \left( {2; - 2; - 1} \right).\)
Suy ra mặt phẳng \(\left( {SAB} \right)\) có phương trình là \(2x - 2y - z + 2a = 0.\)
Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| {2 \cdot a - 2 \cdot 0 - 2 \cdot 0 + 2a} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{4a}}{3}.\) Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(M\) là tâm hình bình hành \(ABB'A'.\)
B. \(M\) là tâm hình bình hành \(BCC'B'.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{{x + 4}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z + 2}}{{ - 2}}\).
B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{{ - 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

